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1965. A finite element model in a form of structural 
dynamic equation for the transient analysis of pressure 
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Abstract. The finite element model of transient pressure pulse propagation in a pipeline is 
presented in the form of the standard structural dynamic equation, which combines steady flow 
analysis for obtaining the initial conditions of the flow in the form of pressures and flow rates and 
non-linear dynamic analysis by using explicit numerical integration techniques. Three options of 
simplification of governing equation set have been analyzed. At low values of steady flow speed 
many non-linear and convection terms could be omitted, while at the flow speeds comparable with 
the wave propagation speed the full equation system has been analyzed. The full equation system 
analysis involves the techniques ensuring corrections of the initial conditions and of the nodal 
flow rate balance. The investigated pipelines may contain large number of branches and loops. 
Parts of large pipelines are analyzed as separate sub-models by employing non-reflecting 
boundary conditions at the cut boundaries. Properties of pressure pulse front degradation as it 
propagates through branching points of the pipeline can be examined. 
Keywords: finite element methods, compressible flow, dynamical systems. 

1. Introduction 

The basic mathematical models of fluid transients have been formulated long since. They were 
used generally to research the water-hammer problems that occur in a pipeline (either upstream or 
downstream from a valve) when sudden closure of a valve happens [1]. The solutions for pipelines 
of uncomplicated geometric configuration could be obtained analytically. In more complicated 
situations the method of characteristics (MOC) has to be applied that was originally developed for 
quick transients in liquid pipelines. The development of efficient numerical algorithms for wave, 
vibration and pulse propagation analysis in pipelines steadily engages numerous researchers and 
remains among significant problems of computational fluid dynamics. Though MOC is still used 
up-to-now to solving fluid transients problems, it has certain underlying shortcomings, such as the 
strict adherence to the relationship of the time steps against the model discretization steps along 
the lengths of the pipes. Many different sonic velocity values over a pipe network are inherent for 
the fluid flow networks constituted of pipes of many different diameters, and the elastic properties 
of the pipe make influence on the equivalent bulk modulus of the fluid. For example, in a heating 
network of a city sonic velocities in different pipeline segments may vary ~10-40 %. This means 
that for fixed length increments the required time step is different as the flow along different pipes 
of the network is investigated. 

As alternatives, the numerical schemes based on the finite difference method, the finite volume 
method and the method of lines have been traditionally employed. In [2] Eulerian-based and 
Lagrangian-based methods for modeling pressure transients have been compared. In [3] finite 
difference-based efficient second order Godunov-type numerical method has been developed for 
simulation of the water-hammer problem in piping, in which fast Riemann solver has been 
constructed. In [4] performances of method of lines and finite difference method were tested from 
the viewpoints of solution accuracy and solution time. An implicit finite difference method has 
been described in [5], which is valid for both quick and slow transients, as well as, for steady 
flows. 
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Application of the finite element method (FEM) to pipeline fluid flow transient analysis was 
always attractive because of the analogy of the structure of the computational model to the real 
system. Moreover, it allows to use regular structural dynamics analysis tools for solving pipeline 
transients and vibration problems, as well as, to develop the coupled models based on 
fluid-structure interaction for pipeline pressure and structural vibration analysis. Many engineers 
should regard the finite element model as the most expedient one to presentation the heterogeneous 
structures of large pipe networks. However, the FEM scheme for pipeline flow cannot be directly 
gained by applying the Galerkin procedure to uni-dimensional compressible flow equations and 
using both pressure and flow velocity as nodal variables. The difficulty to be confronted here is 
that the flow velocities have to satisfy the condition of the flow rate balance at the pipe intersection 
nodes rather than the nodal value compatibility condition. Numerous constraint equations should 
be taken into account. Several finite element schemes suited for fluid and gas flow transients have 
been reported [6-9]. In early work [6] a general computational technique has been developed for 
the study of uniaxial linear vibration of compressible fluids in piping systems. The approach 
(based of finite element mobility method) was similar to the stiffness method in structural 
mechanics finite element models. The elements included in the model comprised finite and 
semi-infinite fluid columns, intermediate and boundary mass-spring-damper systems, cavity 
springs and modal bodies. A finite element model of the flow in the pipe with laminar 
frequency-dependent friction developed in [7] retained the accuracy of the MOC. Based on the 
finite element model, an electronic analogue methodology has been utilized to solving the problem 
of fluid transients. Pressures, velocities and frequency-dependent friction were used as the nodal 
variables. The formulation of the fluid-structure interaction presented in [8] included axial 
vibration model of the pipe aiming at better estimating the relative velocity of the fluid against the 
pipe wall. The model was based on the assumptions of linear elasticity, no buckling, negligible 
radial inertia, and low Mach number. Most reported finite element models of transient pipe flow 
were based on simplified systems of governing equations, in which convection and (or) non-linear 
terms can be neglected. An extensive/general characterization of different options of existing 
transient models and approaches to their solution has been provided in [9]. 

The mathematical form of obtained finite element model heavily depends of the selected type 
of transformation of the set of basic equations. Subject to the degree of simplification with respect 
to the set of basic equations, the equations of the fluid-structure interaction will be linear or, quite 
generally, non-linear. Possible transformations of the basic equation set could come out in the 
differential equations of first or second order.  

The approach developed in this work presents the finite element model as a standard structural 
dynamic equation in terms of pressure variables and their first and second-order time derivatives. 
If convection terms could be omitted, the flow rate variables will appear only in non-linear 
damping terms of the equation. The finite element model is generated by using both first order 
form functions for pressure field approximation within the finite element, and the zero-order flow 
rate field approximation. Though originated from a rather simple idea to transform the pipeline 
pressure vibration problem to the form most relevant to the structural dynamic equation, the study 
considers also models, in which the complete model equation set is handled, without no 
simplifications of the governing equations. The latter is important in the case of highly elastic 
pipes with low effective values of the combined bulk modulus, which takes into account both pipe 
wall elasticity and fluid compressibility. In such situations the velocity of the pressure wave 
propagation is much lower than within rigid pipes, and can be comparable with the fluid flow 
velocity. The problems of this kind may be encountered, particularly, in biomedical simulations 
such as blood flow in blood vessels with highly elastic walls. 

Also other advantages of the presented form of equations may be anticipated. An inherent 
hindrance encountered in the explicit analysis of fast transients by using finite element models is 
associated with the distortion of the short wavelength pulse simulated in a discrete mesh. The 
extent of distortion grows rapidly with time as the distance travelled by the pulse comprises a 
considerable number of lengths of the pulse. A substantial source of distortions of the pulse shape 
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seems to be the phase error produced by the model. A regular approach to minimization of the 
phase errors has been developed earlier, in [10-11], where the mass and stiffness matrices of elastic 
component domains have been synthesized in such a way that after assembling the component 
domain matrices to a larger model the convergence of modal frequencies should be as high as 
possible. The approach seems to be relevant and directly applicable to the models developed in 
this work.  

2. Basic equations 

Let us consider differential element ݀ݔ of the fluid in the pipe of uniform cross-section. The 
basic set of uni-dimensional flow equations, which contains the continuity equation and the linear 
momentum conservation equation reads as: 

۔ە
ݐ߲߲݉ۓ + ݔ߲(ݒ݉)߲ = ݐ߲(ݒ݉)߲,0 + ݔ߲(ଶݒ݉)߲ + ܣ ݔ߲݌߲ + ܦ݂ 2|ݒ|ݒ݉ + ݉݃ sin ܽ = 0, (1)

where ݌ is the fluid pressure, ݉ =  per unit length of ߩ is the mass of the fluid of mass density ܣߩ
the pipe of cross-sectional area ݒ ,ܣ are the velocity of the fluid flow, ܽ is the angle of the pipe to 
against the horizontal, ݃ is the free-fall acceleration, ݂ = 0.3614 √ܴ݁ర⁄  is the friction coefficient 
for turbulent flow, where ܴ݁ is the Reynolds number. 

Having the differentiation in Eq. (1) is carried out, the obtained partial derivatives are 
combined to material derivatives and provide the following relation: 

۔ە
ۓ 1݉ ݐ݀݉݀ + ݔ߲ݒ߲ = ݐ߲ݒ߲,0 + ݒ ݔ߲ݒ߲ + ߩ1 ݔ߲݌߲ + ܦ݂ 2|ݒ|ݒ + ݃ sin ܽ = 0, (2)

where ݀ ⁄ݐ݀  denotes the material derivative expressed as ݀݉ ⁄ݐ݀ = ߲݉ ⁄ݐ߲ + ݒ ߲݉ ⁄ݔ߲ .  
The compressibility of the flow is taken into account by means of the relation: ݀ܭ݌෩ = ݀݉݉, (3)

where ܭ෩ = 1)ܭ + ܦܭ ℎܧ⁄ )ିଵ is the equivalent bulk modulus of the pipe, which combines the 
bulk stiffness of the fluid and the radial expansion stiffness of the pipe, ܭ is the bulk modulus of 
the fluid, ܧ is the stiffness modulus of the pipe material, ܦ, ℎ are the diameter and wall thickness 
of the pipe [1]. 

Now Eq. (3) is substituted into Eq. (2), and material derivative is replaced by partial 
derivatives as: 

۔ە
ݐ߲݌߲ۓ + ݒ ݔ߲݌߲ + ෩ܭ ݔ߲ݒ߲ = ݐ߲ݒ߲,0 + ݒ ݔ߲ݒ߲ + ߩ1 ݔ߲݌߲ + ܦ݂ 2|ݒ|ݒ + ݃ sin ܽ = 0. (4)

Notice that 1 ⁄ߩ = ܣ ݉⁄ , therefore the Eq. (4) does not contain the cross-sectional area term 
any more. In the following derivations it is reasonable to assume the value of cross-sectional area ܣ as constant and to calculate the density of the fluid at each moment of time as: 
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ߩ = ଴ߩ ൬1 + ݌ − ෩ܭ଴݌ ൰, (5)

by taking into account the combined elasticity of the fluid and of the pipe wall, where ݌଴ is the 
reference pressure at which the density of the fluid is ߩ଴.  

Transformation of the Eq. (4) to the structural dynamic equation form is carried out as follows. 
The derivative ߲ݒ ⁄ݔ߲  is calculated from Eq. (4) as: ߲ݔ߲ݒ = − ෩ܭ1 ൬߲ݐ߲݌ + ݒ ,൰ݔ߲݌߲ (6)

and substituted into Eq. (4). Further, Eq. (4.1) is differentiated with respect to time, Eq. (4.2) and 
Eq. (5) are differentiated with respect to ݔ and combined together in order to eliminate ߲ଶݒ ⁄ݐ߲ݔ߲  
and ߲ߩ ⁄ݔ߲ . The resulting equation system reads as: 

ەۖۖ
۔ۖۖ
ۓ

ێێۏ
ଶݐ߲݌ଶ߲ۍێ − ቆܭ෩ߩ − ଶቇݒ ߲ଶݔ߲݌ଶ + ቆ݂|ܦ|ݒ − ෩ܭݒ2 ݔ߲݌߲ − ෩ܭ1 ቇݐ߲݌߲ +ݐ߲݌߲ ቆ݂ܦ2|ݒ|ݒ − ݃ sin ܽ + ቆߩ଴ߩଶ − ߩ1 − ෩ܭଶݒ ቇ ቇݔ߲݌߲ ݔ߲݌߲ + ݒ2 ߲ଶݐ߲ݔ߲݌ = ۑۑے0

ېۑ ,
ݐ߲ݒ߲ = ෩ܭݒ ݐ߲݌߲ − ቆ1ߩ − ෩ܭଶݒ ቇ ݔ߲݌߲ − ܦ݂ 2|ݒ|ݒ − ݃ sin ܽ .

 (7)

Equation system Eq. (7) preserves all the features of the model given by the original equation 
system Eq. (1). Later in the text we will refer to Eq. (7) as the full equation system, or equation 
Type 3.  

At low values of flow velocity compared to wave propagation speed ඥܭ෩ ⁄ߩ  and nearly 
incompressible fluid, the simplified version of Eq. (7) is obtained by omitting non-linear and 
convection terms as: 

۔ۖەۖ
ଶݐ߲݌ଶ߲ۓ + ܦ|ݒ|݂ ݐ߲݌߲ − ଴ߩ෩ܭ ߲ଶݔ߲݌ଶ = ݐ߲ݒ߲,0 = − ଴ߩ1 ݔ߲݌߲ − ܦ݂ 2|ݒ|ݒ − ݃ sin ܽ . (8)

Eq. (8) contains all the terms traditionally used for water-hammer calculations, where the 
pressure wave propagation speed exceeds the flow velocity many times. However, Eq. (8.1) 
enables to obtain the finite element formulation in the standard form of structural dynamic 
equation, provided that appropriate approximation orders for pressure and velocity variables is 
selected. The coupling of Eq. (8.1) to Eq. (8.2) can be observed within the damping term only, 
which is linearly proportional to the absolute value of the flow velocity. At low values of flow 
velocities, the damping does not essentially influence the basic dynamic properties of the system. 
Later in the text we refer to Eq. (8) as equation Type 1. 

Another option of the simplified equation, which includes the convection and fluid 
compressibility terms, reads as: 

۔ۖەۖ
ଶݐ߲݌ଶ߲ۓ + ܦ|ݒ|݂ ݐ߲݌߲ − ቆܭ෩ߩ − ଶቇݒ ߲ଶݔ߲݌ଶ + ቆ݂ܦ2|ݒ|ݒ − ݃ sin ܽቇ ݔ߲݌߲ + ݒ2 ߲ଶݐ߲ݔ߲݌ = ݐ߲ݒ߲,0 = ෩ܭݒ ݐ߲݌߲ − ቆ1ߩ − ෩ܭଶݒ ቇ ݔ߲݌߲ − ܦ݂ 2|ݒ|ݒ − ݃ sin ܽ .  (9)
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Eq. (9) have been obtained from Eq. (7) by omitting the non-linear pressure terms. As 
demonstrated by numerical examples, in many practical situations the differences between 
solutions of Eq. (7) and Eq. (9) are rather negligible, whereas Eq. (8) tends to produce significant 
inadequacies at higher flow velocities, as well as, at lower values of equivalent bulk modulus ܭ෩. 
Later in the text we refer to Eq. (9) as equation Type 2. 

3. Finite element model 

We develop the finite element formulation on the base of equation system Eq. (7). The 
formulations for Eq. (8) and Eq. (9) can be easily obtained by omitting the corresponding terms 
in the finite element expressions.  

3.1. Steady flow  

Transient analysis of pressure vibrations in the pipeline is started by assuming the steady flow 
solution as an initial condition. In the case of pipeline flow the compatibility condition of nodal 
values of the finite elements is valid for pressure terms only. The flow mass rates at each node 
satisfy the balance condition. We transform the equation to the form where flow rates are the 
right-hand side terms of the equations and are added-up to zeros or to external flow rate sources 
as the structural equations are assembled. Constant values of flow rates and linear distributions of 
pressure values over finite elements are assumed. At the first stage the steady flow solution is 
obtained by using Eq. (7.2), in which time-dependent terms are omitted as: 

ቆ1ߩ − ෩ܭଶݒ ቇ ݔ߲݌߲ + ܦ݂ 2|ݒ|ݒ + ݃ sin ܽ = 0. (10)

Two equations necessary to describing the flow rate balance over the finite element are 
obtained by integrating Eq. (10) from 0 to ܮ and from ܮ to 0 as: 

۔ۖەۖ
නۓ ൭ቆ1ߩ − ෩ܭ௘ଶݒ ቇ ݔ߲݌߲ + ܦ݂ 2|ݒ|ݒ + ݃ sin ܽ൱ ௅ݔ݀

଴ = 0,
න ൭ቆ1ߩ − ෩ܭ௘ଶݒ ቇ ݔ߲݌߲ + ܦ݂ 2|ݒ|ݒ + ݃ sin ܽ൱ ଴ݔ݀
௅ = 0. (11)

The following finite element equations are obtained: 

۔ۖەۖ
ܮ݂ܦ2ۓ ቆܣଶߩ − ෩ܭ௘ଶݓ ቇ ൫݌௜ − ௝൯݌ + ܮ݂ߩଶܣܦ2 ∗݌ − ܮଶ݂݃ߩଶܣܦ2 ݖ∆ = ܮ݂ܦ௜|,2ݓ|௜ݓ ቆܣଶߩ − ෩ܭ௘ଶݓ ቇ ൫݌௝ − ௜൯݌ − ܮ݂ߩଶܣܦ2 ∗݌ + ܮଶ݂݃ߩଶܣܦ2 ݖ∆ = ,௝หݓ௝หݓ (12)

where ݌∗ is the pressure created by the pump in case the pump is present within the finite element, ∆ݖ = ௝ݖ − ݓ ,௜ is the increment of height along the finite elementݖ =  is the mass rate of the ݒߩܣ
flow within the finite element and ݓ௜, ݓ௝ are the nodal values of the flow rate. Obviously, over a 
single finite element ݓ = ௜ݓ =  .௝ݓ−

The non-linear finite element equation is obtained from Eq. (12) as: 
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۔ۖەۖ
ܮ݂ܦඨ2|ܥ|ඥ(ܥ)sgnۓ ቆܣଶߩ − ෩ܭ௘ଶݓ ቇ = ,௜ݓ

−sgn(ܥ)ඥ|ܥ|ඨ2ܮ݂ܦ ቆܣଶߩ − ෩ܭ௘ଶݓ ቇ = ௝, (13)ݓ

where ܥ = ௜݌ − ௝݌ + ∗݌ −  .ݖ∆݃ߩ
The tangential matrix of the finite element reads as: 

ሾ۹௘் ሿ = ඨ |ܥ|ܮ2݂ܦ ቆܣଶߩ − ෩ܭ௘ଶݓ ቇ ቂ 1 −1−1 1 ቃ. (14)

Appropriate structural vectors and matrices are assembled by using element Eq. (13) and 
tangential matrices Eq. (14), and standard Newton-Raphson solution procedure is carried out for 
obtaining the steady flow solution. Unknown values of element flow rates, which are present in 
Eqs. (13), (14), are updated at every Newton-Raphson iteration as ݓ௘(௡) =  ௘(௡ିଵ), where ݊ isݓ
iteration number. One should notice that the steady flow solution procedure cannot be started at 
zero initial approximation. For a horizontal pipe elements value ܥ at the first iteration is zero, 
therefore relation Eq. (14) is undefined. A reasonable non-zero initial approximation could be 
obtained by using the linear version of Eq. (13). At zero iteration the linear problem is solved, in 
which the right-hand side terms ݓ௜|ݓ௜|, ݓ௝หݓ௝ห of Eq. (13) are replaced by ݓ௜, ݓ௝, and ݓ௘ = 0 is 
assumed. 

3.2. Dynamic equations of the finite element 

Equations of uni-dimensional finite element of length ܮ are obtained by applying the Galerkin 
weighted residual formulation to the Eq. (7.1) as: 

ܣ නሾۼሿ்௅
଴ ቆ߲ଶݐ߲݌ଶ − ቆܭ෩ߩ − ௘ଶቇݒ ߲ଶݔ߲݌ଶ + ቆ݂|ݒ௘|ܦ − ෩ܭ௘ݒ2 ݔ߲݌߲ − ෩ܭ1 ቇݐ߲݌߲ +      ݐ߲݌߲ ቆ݂ݒ௘|ݒ௘|2ܦ − ݃ sin ܽ + ቆߩ଴ߩଶ − ߩ1 − ෩ܭ௘ଶݒ ቇ ቇݔ߲݌߲ ݔ߲݌߲ + ௘ݒ2 ߲ଶݐ߲ݔ߲݌ቇ ݔ݀ = 0, (15)

where ሾۼሿ் = ሾ1 − ݔ ⁄ܮ , ݔ ⁄ܮ ሿ  the form function matrix of the element, which is used for 
interpolation of pressure in terms of nodal variables as (ݔ)݌ = ሾۼሿሼ۾௘ሽ. 

The zero-order approximation for the fluid velocity, ݒ௘, and mass density, ߩ, means that the 
average values within a single finite element are used. In Eq. (15) the term containing ߲ଶ݌ ⁄ଶݔ߲  
is integrated by parts as follows: 

ܣ− නሾۼሿ்௅
଴ ቆܭ෩ߩ − ௘ଶቇݒ ߲ଶݔ߲݌ଶ ݔ݀ = ܣ− ቆܭ෩ߩ − ௘ଶቇݒ ሾۼሿ் ቤ଴ݔߜ݌ߜ

௅ − ܣ ቆܭ෩ߩ − ௘ଶቇݒ න ߲ሾܰሿ்߲ݔ௅
଴

ݔ߲݌߲  ݔ݀
      = ܣ− ቆܭ෩ߩ − ௘ଶቇݒ ቆ1ߩ − ෩ܭ௘ଶݒ ቇିଵ ቆ− ܦ݂ ௘|2ݒ|௘ݒ − ݃ sin ܽቇ ሾۼሿ்อ଴

௅ 
ܣ−       ቆܭ෩ߩ − ௘ଶቇݒ න ߲ሾܰሿ்߲ݔ௅

଴
߲ሾܰሿ߲ݔ ݔ݀ ሼ۾௘ሽ,
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where value ݌ߜ ⁄ݔߜ = ൫1 ⁄ߩ − ௘ଶݒ ⁄෩ܭ ൯ିଵ(− |ݒ|ݒ଴݂ߩ ⁄2ܦ − ଴݃ߩ sin ܽ) is substituted form Eq. (10) 
by assuming ߲ݒ ⁄ݐ߲ = 0. It ensures that the investigated transient process starts at the initial 
conditions described by steady flow pressures and velocities.  

Finally, the finite element equations read as: 

ቊሾۻ௘ሿ൛۾ሷ ௘ൟ + ൣ۱௘൫۾ሶ ௘, ሶ۾௘൯൧൛۾ ௘ൟ + ሾ۹௘(۾௘)ሿሼ۾௘ሽ + ሼۿ௘ሽ = ሶ௘ݒ,0 = ,ܩ (16)

where: 

௘(ଷ)ۻൣ ൧ = ܣ නሾۼሿ்ሾۼሿ ௅ݔ݀
଴ = 3ܮܣ ൥ 1 1 2ൗ1 2ൗ 1 ൩ ≈ 2ܮܣ ቂ1 00 1ቃ,

ൣ۱(ଷ)௘ ൧ = ൭ܮܣ ቆ݂|ݒ௘|ܦ − ෩ܭݒ2 ௘ଶ݌ − ܮ௘ଵ݌ − ෩ܭ1 ሶ௘ଵ݌ + ሶ௘ଶ2݌ ቇ ൥1 2ൗ 00 1 2ൗ ൩ + ௘ݒܣ ቂ−1 1−1 1ቃ൱, 
ൣ۹(ଷ)௘ ൧ = ܮܣ ቆܭ෩ߩ − ௘ଶቇݒ ቂ 1 −1−1 1 ቃ       + 2ܣ ቆ݂ݒ௘|ݒ௘|2ܦ − ݃ sin ܽ + ቆߩ଴ߩଶ − ߩ1 − ෩ܭ௘ଶݒ ቇ ௘ଶ݌ − ܮ௘ଵ݌ ቇ ቂ−1 1−1 1ቃ, ൛ۿ(ଷ)௘ ൟ = ෩ܭܣ ቆܮ∗݌ − ܦ௘|2ݒ|௘ݒ݂ − ݃ sin ܽቇ ቄ 1−1ቅ, ܩ(ଷ)௘ = ෩ܭ௘ݒ ሶଵ݌ + ሶଶ2݌ − ቆ1ߩ − ෩ܭ௘ଶݒ ቇ ଶ݌ − ܮଵ݌ − ܦ݂ ௘|2ݒ|௘ݒ − ݃ sin ܽ௘,
where ݌∗ is the pressure created by a pump, if the pump works within the finite element. Bottom 
index „(3)“ indicates that the matrices have been obtained by using full equation set of Type 3 
(Eq. (7)).  

In the case of the simplified set of governing equations Type 1, the relations Eq. (16) become 
much simpler and read as: 

௘(ଵ)ۻൣ ൧ ≈ 2ܮܣ ቂ1 00 1ቃ, ൣ۱(ଵ)௘ ൧ = ܦ௘|2ݒ|݂ܮܣ ቂ1 00 1ቃ,   ൣ۹(ଵ)௘ ൧ = ܮܣ ቂ 1 −1−1 1 ቃ,൛ۿ(ଵ)௘ ൟ = ෩ܭܣ ቆܮ∗݌ − ܦ௘|2ݒ|௘ݒ݂ − ݃ sin ܽቇ ቄ 1−1ቅ, ۵(ଵ)௘ = ෩ܭ௘ݒ ሶଵ݌ + ሶଶ2݌ − ଶ݌ − ܮ଴ߩଵ݌ − ܦ݂ ௘|2ݒ|௘ݒ − ݃ sin ܽ௘. (17)

Element Eq. (16.1) are assembled to structural equations, and Eq. (16.2) are solved for each 
element separately. Here, we should notice that there are no algebraic relations employed in 
Eq. (17), which ensure the flow mass rate balance condition at the nodes of adjacent elements. In 
some cases, during the time integration process the element mass rates summed together at each 
node may give the values, which „drift away” from correct zero values. The ways to preventing 
such inaccuracies will be discussed in the next subsection. 

The well-known non-reflecting boundary condition [12] may be applied at cut-off boundaries 
of the analyzed part of the pipeline as: 

ඨܭ෩ߩ ݔ߲݌߲ + ݐ߲݌߲ = 0. (18)
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As model equations contain convection terms, the higher order numerical integration schemes 
should be applied. In his work all examples were calculated by using MATLAB function ode23tb 
suited to solving stiff differential equations. 

3.3. Correction terms 

Two noteworthy situations may occur while applying the proposed finite element scheme.  
The first situation is related to the evaluation of the steady flow initial condition. As mentioned 

before, the steady flow was calculated by using model Eqs. (13), (14), which was based on the 
second equation of Eq. (2) only. Another form of the same Eq. (16.2), in which time-dependent 
terms are assumed to be zeros. The dynamic response is calculated by using both Eq. (16). The 
steady flow initial conditions, which were calculated to answer Eq. (16.2) only, have to meet also 
Eq. (16.1). This is really so for simplified equation set Type 1, however, the first equation is not 
satisfied exactly if equation Types 2 and 3 are used. This may induce an artificial initial 
disturbance, which results in undesirable numerical noise in the solution of the pressure vibration. 
The easiest way to avoid this could be the integration of finite element model equations in time 
without any external excitation terms. After certain time of integration, the corrected equilibrium 
situation is achieved as the result of the damped transient vibration process. Artificial damping 
could be applied in order to force quicker establishment of equilibrium. The new steady 
equilibrium state is assumed to be an initial condition for subsequent transient calculations.  

Another way to achieve the same result is purely algebraic. By neglecting all time-dependent 
terms in Eq. (16) and assuming initial disturbances as zero, let us express nodal pressure ݌௘ଶ from 
Eq. (16.2) and substitute into Eq. (16.1). The residual will be the equilibrium correction term, 
which has to be subtracted from Eq. (16.1) during each subsequent integration step. Expressions 
are obtained rather cumbersome and we do not present them here. A proper way used in this work 
was to perform all the derivation by using symbolic mathematics software and to obtain the 
necessary terms of the formulae as fragments of the program source code.  

The second problematic situation is related with the “drifting away” situation from the nodal 
mass rate balance condition, while performing the subsequent time integration steps. As 
demonstrated by numerical examples, the drift is very small in the case of nearly incompressible 
flows; however, it may become considerable where the flow compressibility is significant. The 
remedy applied by us was based on calculation of minimum corrections of flow rates within 
elements. The applied corrections should ensure the nodal flow mass rate balance condition at 
each time step. This is performed by transforming Eq. (16.2) into finite element equation form of 
first approximation order as: 

− ێێۏ
ۍ |௘ݒ|௘݂ܦ2 00 ۑۑے|௘ݒ|௘݂ܦ2

ې ൜ݓሶ ௘ + ሶݓ ௘∗ݓሶ ௘ + ሶݓ ௘∗ൠ
      ≈ − ۔ۖەۖ

෩ܭܮݒۓ ݐଵ߲݌߲ + ܮ௘ߩܣܦ2 ௘݂|ݒ௘| ቆ1ߩ − ෩ܭଶݒ ቇ ൫݌௜ − ௝൯݌ − ܮߩܣܦ2 ௘݂|ݒ௘| ෩ܭܮݒݖ∆݃ ݐଶ߲݌߲ + ܮ௘ߩܣܦ2 ௘݂|ݒ௘| ቆ1ߩ − ෩ܭଶݒ ቇ ൫݌௝ − ௜൯݌ + ܮߩܣܦ2 ௘݂|ݒ௘| ۖۘۙݖ∆݃
ۖۗ + ቄݓ௜ݓ௝ቅ, (19)

where ݒ௘ ௘ݓ ,  are averaged flow velocity and mass rate within the element, ݓሶ ௘∗  is the sought 
correction of element flow mass rate, and ݓ௜, ݓ௝ are nodal flow mass rates, which have to answer 
the nodal flow mass rate balance condition. As element Eq. (19) are assembled to the structural 
equation, the nodal values of flow mass rates (the rightmost term in Eq. (19)) add up to zeros or 
to prescribed external nodal flow rate values. We have to ensure the satisfaction of the assembled 
equation by applying minimum corrections ݓሶ ௘∗ . The conditional optimization problem is 
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formulated as: 

ቐmin 12 ሼܟሶ ௘௟∗ ሽ்ሼܟሶ ௘௟∗ ሽ,ሾࡾሿ(ሼܟሶ ௘௟ሽ + ሼܟሶ ௘௟∗ ሽ) = ሼܟሶ ௡ሽ, (20)

where ሼܟሶ ௡ሽ – assembled right-hand sides of element Eq. (19), ሼܟሶ ௘ሽ – vector containing flow mass 
rates time derivatives of all elements, ሼܟሶ ௘∗ሽ – vector containing corrections of flow mass rates time 
derivatives of all elements, ሾ܀ሿ – matrix assembled from left-hand sides of Eq. (19).  

The solution of Eq. (20) reads as: ሼܟሶ ௘௟∗ ሽ = ሾ۾ሿ்(ሾ۾ሿሾ۾ሿ்)ିଵ(ሾ۾ሿሼܟሶ ௘௟ሽ − ሼܟሶ ௡ሽ). (21)

Implementation of Eq. (21) during each time step of the integration scheme is resource 
consuming, if the pipeline is large. Fortunately, it is not necessary in the case of nearly 
incompressible flows, such as water supply or heating pipelines. It may appear as enough to apply 
the correction procedure each tenth or even several more steps.  

The correction may work poorly in the case of pipelines containing segments, where nearly 
zero flow rates may occur. In such situations the left-hand side matrix of Eq. (20) may become 
indefinite.  

4. Numerical results 

Verification of the model is carried out by analyzing its behavior in simple situations, the 
properties of solutions of which are basically known ahead. The results of numerical experiments 
provided in this section illustrate the behavior of the proposed finite element scheme when applied 
to the pulse propagation along a uniform pipe at different flow rates and different sonic velocities. 
As a test example a sample pipe of 600 mm diameter, wall thickness 8 mm and 720 m length was 
selected. At each numerical experiment the calculations start from the steady flow situation, which 
is obtained by solving numerically the steady flow problem Eq. (13) at prescribed input flow rates.  

Let us consider the water flow in the pipe. The parameters used are Young’s modulus  ܧ = 2.1×1011 Pa of the pipe material, water bulk modulus ܭ = 2.2×109 Pa, mass density  ߩ = 995 kg/m3, dynamic viscosity ߤ = 0.547×10-3 (N×s)/m2. The speed of the pressure wave in 
such a pipe is 1112.7 m/s. Two situations were analyzed where input volumetric rates were 
400 m3/h and 40000 m3/h, the corresponding pressure drops along the pipe at the steady flow 
situation were 0.01146 MPa and 3.62 MPa, corresponding flow mass rates were ݓ = 110.56 kg/s 
and w=110.56 kg/s, flow velocities ݒ = 0.3928 m/s and. ݒ = 39.28 m/s The obtained almost 
commensurate ratios of values obtained in both situations indicate that the fluid is nearly 
incompressible, and the flow velocity along the pipe is practically constant. The excitation 
pressure pulse is generated at the left hand end of the pipe as the pressure overshoot 105 Pa of 
half-cosine pulse front of duration 0.15 s is applied.  

Fig. 1(a) presents the distribution of dynamic pressure values (i.e. the difference of pressures 
obtained during pressure pulse propagation from the values of obtained at the steady flow  
situation) along the pipe at time moment ݐ = 2 s at two different steady flow velocity values 
0.39 m/s and 39 m/s. The pressure at the right-hand end of the pipe is assumed to be fixed and 
equal to the pressure at the steady flow situation. The curves illustrate that the equations of all 
considered equation Types 1, 2 and 3 provide practically identical results at low velocities of the 
steady flow. However, at higher steady flow velocities the advection terms in equations Types 2 
and 3 condition necessary corrections to the resulting velocity of the pulse propagation. This 
velocity becomes higher than calculated by using the equation Type 1 as the pulse is propagating 
downstream, and lower – in the upstream direction. This can be observed in Fig. 1(b), where 
screenshots of the shape of the pressure pulse travelling downstream from the left-hand end, and 
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then reflected from the right hand end and travelling upstream along the pipe are superimposed in 
the same picture. It is obvious that the advection terms shouldn’t be neglected if the duration of 
the integration process is much larger than the pulse duration. The disparities among solutions 
obtained by using equations Types 2 and 3 are rather negligible at all considered steady flow 
velocities. The slight waviness of the pressure curve that follows the pulse front is caused by the 
numerical noise, which is underlying for wave equation solutions obtained in discrete meshes. 
Such errors can be reduced by using shorter element or by applying the generalized mass matrices 
instead of the lumped ones [10].  

 
a) Pressure pulses at steady flow velocities 0.39 m/s and 39 m/s obtained  

by using equation Types 1, 2, and 3 

 
b) Superimposed screenshots of propagating and reflected pressure pulse obtained by using equation 

Fig. 1. Distribution of dynamic pressure values along the pipe at moments of time ݐ = 2 s  
at two different steady flow velocity values 0.39 m/s and 39 m/s 
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If the speed of the wave propagation exceeds many times the speed of the steady flow, all 
equation types provide very close results. In such cases equation Type 1 may be used as a base for 
pressure pulse propagation finite element models and flow rate balance correction terms can be 
neglected. The model also requires no static correction terms, therefore the finite element model 
is simple and close to linear. The only non-linear term is the damping term, which includes the 
product of pressure and flow velocity. However, at low values of dynamic viscosity the basic 
dynamic properties of the pulse propagation are governed by stiffness and inertia terms of the 
model. The approach for the treatment of the model is close to that applied to structural dynamic 
equations.  

The picture becomes different as the speed of the pressure wave propagation becomes 
comparable with the flow velocity one. Consider the situation where the speed of the pressure 
wave propagation along the pipe is 148.1 m/s, and dynamic viscosity ߤ = 0.547×10-3 (N×s)/m2. 
Such computational situations may occur not necessarily due to low values bulk modulus of the 
fluid but also in the situations where the pipes carrying the fluid are highly elastic and may cause 
the low values of the equivalent bulk modulus ܭ෩. Such kind of models is inherent to the pressure 
wave propagation in blood vessels, which are able to expand in the radial direction under influence 
of the fluid pressure. In this work for the sake of comparison we analyze rather hypothetical 
situation, where the geometry of the pipe is the same as described at the beginning of this section. 
At the steady flow situation, by providing input volumetric rates 400 m3/h and 40000 m3/h, the 
corresponding pressure drops along the pipe at the steady flow situation are 0.001146 MPa and 
3.62 MPa, and flow mass rates correspondingly are 110.56 kg/s and ݓ = 11056 kg/s, and flow 
velocities ݒ = 0.3928 m/s and ݒ = 39.28 m/s. 

The obtained values are very similar to those obtained for the fluid with the speed of the 
pressure wave propagation 1112.7 m/s, as the value of bulk modulus does not bring significant 
changes in the coefficient of the steady flow Eq. (13). However, the wave propagation properties 
are obtained very different compared to previous situation. Fig. 2 illustrates the transition of the 
flow from one steady state to another, as the pressure pulse of 5×105 Pa, duration 0.45 s is applied. 
Screenshots of flow mass rates distribution along the pipe at successive moments of time from 0 
to 36 s are presented. After the application of the excitation pulse the input pressure acquires new 
steady value 4.15 MPa, and the new steady value of the flow rate should be established. Curves 
presented in Fig. 2(a) demonstrate how the flow rate distribution converges to the new steady 
value 11857 Pa (dotted line). The same value is obtained as the steady flow equation solution, as 
well as, as the final state of the flow transient. This verifies the validity of the dynamic finite 
element model. The necessity of the nodal flow mass rate balance correction is clearly 
demonstrated by comparing the results presented in Fig. 2(a) and Fig. 2(b). Without the correction 
procedure, the flow rate solution does not converge to a steady value along the pipe (Fig. 2(b)). 

However, the pressure errors obtained by omitting the nodal rate balance correction are not so 
significant, Fig. 3. The three pictures of Fig. 3 present initial (ݐ = 0 s) and final (ݐ = 76 s) states 
of pressures, flow velocities and flow rates distribution along the pipe at three different 
computational options: (A) full equation system Type 3 with and without nodal rate balance 
correction, and (B) simplified equation system Type 1 with nodal rate balance correction. 
Obviously, option Type 3 with nodal rate balance correction should be considered as being closest 
to the exact solution. If other two options are considered, only insignificant differences of pressure 
values along the pipe are observed, Fig. 3(a). Velocity values at equation Type 1 are obtained 
erroneous at both final and initial state, because no fluid compressibility is taken into account by 
the equations, see Fig. 3(b). Equation Type 3 without nodal rate balance correction produces errors 
of flow velocities, which are quantitatively more significant than the corresponding pressure  
errors. The results presented in Fig. 3(c) depict the initial and final state of flow rates and should 
be regarded as steady flow states, to which the solutions presented in Fig. 2 converge. 

As the equivalent bulk modulus of the fluid ܭ෩ increases, the influence of the nodal flow rate 
balance correction becomes much less significant, as could be seen from the results presented in 
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Fig. 4. It presents the initial and final state of pressures and flow mass rate at three different values 
of ܭ෩ = 2.2×107 Pa, ܭ෩ = 2.2×108 Pa and ܭ෩ = 2.2×109 Pa, which correspond to pressure wave 
velocity values 148.1 m/s, 452.8 m/s and 1112.7 m/s. All curves are obtained without application 
of the nodal rate balance correction. When the pressure wave velocity exceeds the flow velocity 
10 and more times, the nodal flow rate balance is approximately held up without additional effort 
of correction by means of relations Eq. (20) and enables to save the computational time.  

 
a) Nodal rate balance correction applied 

    
b) Without nodal rate balance correction 

Fig. 2. Superimposed screenshots of distribution of flow rate values along the pipe  
(pules propagation velocity 148.1 m/s) at successive moments of time  

in the range 0-36 s at initial steady flow velocity average value 39 m/s, EqT = 3  
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a) 

   
b) 

 
c) 

Fig. 3. a) Steady values of pressures, b) flow velocities and c) flow rates at initial and final moments  
of time which are obtained after application of the pressure pulse 5×105 Pa  

by applying three different options of the equation system 
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a) 

 
b) 

Fig. 4. a) Steady values of pressures and b) flow rates at the final moment of time, which are obtained  
after application of the pressure pulse 5×105 Pa by solving the FE model based on equation  

Type 3 with no nodal rate balance corrections at different values of pressure  
wave propagation along the pipe and steady flow velocity 39 m/s 

Fig. 5 presents the example of pressure wave propagation along the pipe, if non-reflecting 
boundary condition is applied at the right-hand end of the pipe. One may observe that no reflected 
wave is observed and the constant pressure value ݌ − ଴݌ = 5×105 Pa along the pipe is established 
in the course of time.  

The presented examples verify the validity of the algorithm. In each of the presented situations 
the convergence of the model is observed as the computational mesh is refined. 

The following example illustrates the application of the model to a real engineering situation 
of a pipeline, which represents a part of heating network of a city. Rather slow water flow at 
velocity 2-3 m/s is assumed; thus the model based on equation Type 1 could be used, and nodal 
rate balance correction procedure could be omitted. Only a part of pipe network has been analyzed, 
the prescribed pressure and non-reflecting boundary conditions being used at the cut boundaries. 
The initial steady flow situation was simulated by applying prescribed flow rates and reference 
pressure at a given point, Fig. 6. 
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Fig. 5. Screenshots of pressure pulse propagation, where non-reflecting boundary condition  

is applied at the right-hand end of the pipe 

The system consists of supply and return pipelines. The two parts are interconnected at 
numerous points, at which water consumers are connected to the pipeline. The notations used in 
Fig. 6 are as follows: 

KPxx are key-point numbers. Pipes between each pair of key-points are of uniform diameter 
and wall thickness. Pipes are meshed into finite elements (not shown in the picture), the length of 
which depends on wave propagation speed and the duration of the excitation pressure pulse. In 
most cases element length 6 m was suitable for calculations; ݓ =  denotes the prescribed input and output steady flow rates (m3/h), positive for incoming ݔݔ
and negative for outgoing flow. They are used for steady flow calculation, the result of which is 
steady pressure distribution over the pipeline. The obtained pressures serve as initial conditions 
for the transient analysis; ܾܲ = ݔܲ ;are prescribed reference pressures used for steady and transient calculation ݔݔ =  is the given amplitude of the pressure pulse measured with respect to the value of the ݔݔ
pressure at steady flow situation; 

NRFL are non-reflecting points corresponding to cut-off boundaries, which separate the 
investigated part of the pipeline from the whole pipe network. They are used for transient 
calculations only; 

NCON are points of interconnection of supply and return pipelines, which are represented by 
equivalent pipes of given lengths and diameters. 

Fig. 7 presents the pressure time rates, as the pressure drops about 1×105 Pa from the steady 
value during 0.3 s and imitates the situation of unexpected leakage in such kind of pipelines. 
Results of such calculations may be employed for the development of algorithms of pipeline state 
monitoring systems, where a change of measured pulse front shapes as the pulse propagates along 
the pipeline may be used for determining the locations of sudden leakages. 
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a) 

 
b) 

Fig. 6. The structure of the sample pipeline – a) supply and b) return parts,  
which are interconnected at consumer connection points NCONxx 
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Fig. 7. Pressure time laws at points A, B, C and D of the supply and return parts of the pipeline presented 

in Fig. 6, due to the pressure drop 1e5 Pa from the steady value during 0.3 s time  
at KP35 (point A) of the supply pipeline imitating the situation of unexpected leakage 

5. Conclusion 

The finite element scheme has been proposed for pressure wave propagation simulations in 
pipelines. Three analyzed options of the finite element model are based on different 
simplifications of the governing equation system, where the full system is one of the options. The 
advantage of the approach is that the pressure equation has the form of the general structural 
dynamic finite element equation, and the methods used for structural dynamic analysis can be 
directly applied to the pressure wave and vibration analysis within the pipeline. Straightforward 
application of the approach based on first order pressure approximation and zero order velocities 
approximation within finite elements can be applied only when the flow velocity is significantly 
less than the wave propagation velocity along the pipes. At higher flow velocities compressibility 
effects are taken into account, and nodal rate balance correction should be performed. Obviously, 
the rather expensive correction procedure is sufficient to perform every 10-20 steps. The 
numerical experiments demonstrate that the pressure errors are not significant even if the nodal 
rate balance correction is not applied, therefore considerable computational time savings could be 
obtained for initial estimations of the sought solution. 

The possible application area of the developed model is the simulation of the pipeline leakage 
monitoring system, the purpose of which is to determine the location of the leakage (pressure drop 
pulse) basing on pressure variations registered by meters arranged at various places of the pipeline. 
The model can be also applied to simulations of the pressure pulse propagation in blood vessels 
with highly deformable walls, and in other applications. 

References 

[1] Wylie E. Benjamin, Streeter Victor Lyle, Suo Lisheng Fluid Transients in Systems. Vol. 1. Prentice 
Hall, Englewood Cliffs, NJ, 1993. 

[2] Wood Don J., et al. Numerical methods for modeling transient flow in distribution systems. Journal 
of American Water Works Association, 2005, p. 104-115. 

[3] Hwang Yao‐Hsin, Chung Nien‐Mien A fast Godunov method for the water‐hammer problem. 
International Journal for Numerical Methods in Fluids, Vol. 40, Issue 6, 2002, p. 799-819. 

[4] Selçuk Nevin, Tarhan Tanıl, Tanrıkulu Songül Comparison of method of lines and finite difference 
solutions of 2‐D Navier-Stokes equations for transient laminar pipe flow. International Journal for 
Numerical Methods in Engineering, Vol. 53, Issue 7, 2002, p. 1615-1628. 



1965. A FINITE ELEMENT MODEL IN A FORM OF STRUCTURAL DYNAMIC EQUATION FOR THE TRANSIENT ANALYSIS OF PRESSURE IN PIPELINES.  
RIMANTAS BARAUSKAS, ANDRIUS KRIŠČIŪNAS, TOMAS BLAŽAUSKAS 

1226 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. MAR 2016, VOL. 18, ISSUE 2. ISSN 1392-8716  

[5] Greyvenstein G. P. An implicit method for the analysis of transient flows in pipe networks. 
International Journal for Numerical Methods in Engineering, Vol. 53, Issue 5, 2002, p. 1127-1143. 

[6] Frid Anders Fluid vibration in piping systems – a structural mechanics approach, I: theory. Journal 
of Sound and Vibration, Vol. 133, Issue 3, 1989, p. 423-438. 

[7] Shu, Jian-Jun A finite element model and electronic analogue of pipeline pressure transients with 
frequency-dependent friction. Journal of Fluids Engineering, Vol. 125, Issue 1, 2003, p. 194-198. 

[8] Kochupillai Jayaraj, Ganesan N., Padmanabhan Chandramouli A new finite element formulation 
based on the velocity of flow for water hammer problems. International Journal of Pressure Vessels 
and Piping, Vol. 82, Issue 1, 2005, p. 1-14. 

[9] Osiadacz Andrej J. Different transient flow models-limitations, advantages, and disadvantages. PSIG 
Annual Meeting. Pipeline Simulation Interest Group, 1996. 

[10] Barauskas Rimantas, Barauskiene Ramute Highly convergent dynamic models obtained by modal 
synthesis with application to short wave pulse propagation. International Journal for Numerical 
Methods in Engineering, Vol. 61, Issue 14, 2004, p. 2536-2554. 

[11] Krisciunas Andrius, Barauskas Rimantas Minimization of numerical dispersion errors in finite 
element models of non-homogeneous waveguides. Information and Software Technologies, Springer 
Berlin Heidelberg, Vol. 403, 2013, p. 357-364. 

[12] Wolf John P., Song Chongmin Finite-Element Modelling of Unbounded Media. Wiley, Chichester, 1996. 

 

Rimantas Barauskas Head of Department of Applied Informatics, Faculty of Informatics 
of Kaunas University of Technology. Graduated the Applied Mathematics studies from 
Kaunas University of Technology (KTU) as Engineer-Mathematician in 1976. Received 
his Ph.D. (1981) and Habilitation (1992) degrees in Mechanical Engineering at KTU. The 
main topics of research include the methods and applications of computer simulation of 
the dynamic behavior of solid structures and coupled systems including vibration, impact 
and penetration problems. Published over 200 scientific articles and several monographs. 

 

Andrius Kriščiūnas is a Lecturer at the Department of Applied Informatics, Faculty of 
Informatics at Kaunas University of Technology. He obtained his Master’s degree in 
Informatics at Kaunas University of Technology in 2012 and is a Ph.D. student of 
Informatics at the current moment. His research interests include analysis and design of 
finite elements. 

 

Tomas Blažauskas is an Associate Professor and head of Software Engineering 
Department at Kaunas University of Technology. His current research interests include 
analysis and design of finite elements, software engineering, natural user interfaces. 

 








