On

Improvement of Convergence Rate of Short Wave Propagation Finite Element Models

RIMANTAS BARAUSKAS

Department of System Analysis, Kaunas University of Technology, Lithuania Studentų 50-407 e-mail: <u>rimantas.barauskas@ktu.lt</u>

Short wave propagation models

• the length of the *short wave* is many times less than the dimensions of the structure

Applications in:

- Ultrasonic measurement process simulation;
- Seismic waves analysis;
- Water waves simulation;
- •

Application example: Time-of-flight difraction (TOFD) method

TOFD method geometry:

- 1. direct, subsurface wave;
- 2. wave diffracted from top point of the crack;
- 3. wave diffracted from bottom point of the crack;
- 4. signal reflected from the bottom of the plate

2D Example: Ultrasonic wave packages propagating in plexyglass and steel structure

Modeling example : the mesh

SH WAVE PROPAGATION Time = 0 Contours of Y-Velocity min=0, at node# 1 max=0, at node# 1 max displacement factor=100000

¥ ¥ ✓ Fringe Levels 4.000e-002 _ 3.200e-002 _ 2.400e-002 _ 1.600e-002 _ 8.000e-003 _ -0.000e+000 _ -8.000e-003 _ -1.600e-002 _ -2.400e-002 _ -3.200e-002 _ -4.000e-002

SH WAVE PROPAGATION Time = 0 Contours of Y-Velocity min=0, at node# 1 max=0, at node# 1 max displacement factor=100000 3D Example: Ultrasonic wave propagation in 2 welded plates (simulation in LSDYNA)

> Fringe Levels 4.000e-002 3.200e-002 2.400e-002 1.600e-002 8.000e-003 0.000e+000 -8.000e-003 -1.600e-002 -2.400e-002 -3.200e-002 -4.000e-002

Dynamic equation $[\mathbf{M}]\{\ddot{\mathbf{U}}\}+[\mathbf{C}]\{\dot{\mathbf{U}}\}+[\mathbf{K}]\{\mathbf{U}\}=\{\mathbf{R}(t)\}$ $[\mathbf{C}]=\alpha[\mathbf{M}]+\beta[\mathbf{K}] (proportional damping)$ **Difficulties:**

• computational models of very large dimensionality (the smallest 2D problems of any practical value require to use models consisting of 10⁶-10⁷ elements);

•very large number of time integration steps (inversely

proportional to the linear dimension of elements);

•adequacy of continua-based models to reality

Increase of the element size (and simultaneously of the time integration step)

preserving accuracy

Increase of the convergence rate of the model

Increase of computational efficiency

Mass matrices of an element:

- Lumped (diagonal);
- Consistent;
- Generalized;

$$\begin{bmatrix} \mathbf{M}_{L}^{e} \end{bmatrix} = diag(m_{i})$$
$$\begin{bmatrix} \mathbf{M}_{C}^{e} \end{bmatrix} = \int_{V} \rho[\mathbf{N}]^{T} [\mathbf{N}] dV$$
$$\begin{bmatrix} \mathbf{M}_{G}^{e} \end{bmatrix} = \alpha \begin{bmatrix} \mathbf{M}_{C}^{e} \end{bmatrix} + (1 - \alpha) \begin{bmatrix} \mathbf{M}_{L}^{e} \end{bmatrix}$$

• ?

Mass matrices are not uniquely defined and an "optimum" form of them can be found

Wave pulse propagation through discrete models

Generalized, 240d.o.f.

2		 			
	x : : x : x :	X : : X : X	: X : : X :	x : x : : x	 x
	 		L		

Consistent, 240d.o.f.

Modal errors of a unidimensional model (12 nodes)

Modal errors of a uni-dimensional model

• The numerical distortion of a wave propagating in a structure is determined mainly by *modal frequency errors of the model*

Modal frequency errors cause different propagation velocities of harmonic components (*phase errors*). The amount of distortion of the wave shape increases with the time of propagation.

- Real computational models <u>always(?)</u> have modal errors
- Practically the influence of modal errors is reduced by using a *highly refined mesh*
- The mesh density must provide that lower 'close to exact' *modal* frequencies cover the frequency range of meaningful harmonic components of the propagating wave

Practical recommendations:

17 (30-40?) nodes per sine wave length

Definition of an 'ideal' discrete model

• An *'ideal' discrete model* of wave propagation in a closed domain represents the *modal frequencies of all modes equal to exact modal frequencies of the continuous domain* of the same shape.

How to build a model ensuring 'close to exact' modal frequencies and shapes over all modal frequency range?

Modal synthesis relations $\begin{bmatrix} \tilde{\mathbf{M}} \end{bmatrix} = \left(\begin{bmatrix} \tilde{\mathbf{Y}} \end{bmatrix}^T \right)^{-1} \begin{bmatrix} \tilde{\mathbf{Y}} \end{bmatrix}^{-1};$ $\begin{bmatrix} \tilde{\mathbf{K}} \end{bmatrix} = \left(\begin{bmatrix} \tilde{\mathbf{Y}} \end{bmatrix}^T \right)^{-1} \begin{bmatrix} diag(\omega_1^2, \omega_2^2, ..., \omega_n^2) \end{bmatrix} \begin{bmatrix} \tilde{\mathbf{Y}} \end{bmatrix}^{-1}$

$[\mathbf{Y}], \boldsymbol{\omega}_1, \boldsymbol{\omega}_2, \dots, \boldsymbol{\omega}_n$

'Close-to-exact' modal shapes and frequencies known analytically or <u>obtained in a finely discretized model</u>

 $\left| \begin{array}{c} { ilde{\mathbf{Y}}}
ight|$ - Modal shapes $\left[{ ilde{\mathbf{Y}}}
ight]$ approximated in a rough mesh

Modal synthesis practically cannot be applied for real computational domains:

- They are too large to compute the matrix inverse $\left[\tilde{\mathbf{Y}}\right]^{-1}$
- we <u>do not know</u> exact modes of the domain

1D Component substructures

2D Component substructures

Component substructure of dimension nxn

Problem formulation

- Stand-alone *component substructures* obtained by synthesizing 'exact' modes are 'ideal';
- Unfortunately, structures assembled of 'ideal' component substructures always *produce significant modal errors*.

<u>Problem:</u> Obtain the matrices of a component substructure(CS) such that structure of any size and shape formed by assembling together the matrices of CS would have as many as possible close-to-exact values of modal frequencies

Way of solution

•Matrices of a *component substructure(CS)* are optimized in order to provide the best spectral properties to a *sample domain* assembled of CS;

•Optimized CS can be used to form larger *computational domains* as higher-order elements (superelements);

•Computational domains assembled of optimized CS preserve approximately the same percentage of close-toexact modal frequencies as was obtained for a sample domain

Non-uniqueness of approximation of 'exact' modal shapes in rough meshes

Optimum spectral properties of a component substructure

Find optimum *modification of spectral properties of a component substructure* in order to produce minimum modal error of sample computational domains

$$\begin{bmatrix} diag\left(0,...,0,\,\alpha_{r+1}^{\omega}\omega_{r+1}^{2},\,\alpha_{r+2}^{\omega}\omega_{r+2}^{2},...,\,\alpha_{r+n}^{\omega}\omega_{n}^{2}\right) \end{bmatrix} = \begin{bmatrix} diag\left(\omega^{2}\right) \end{bmatrix} \left\{ \mathbf{a}^{\omega} \right\}$$
$$\begin{bmatrix} \{\tilde{\mathbf{y}}_{1}\},...,\{\tilde{\mathbf{y}}_{r}\},\alpha_{r+1}^{y}\{\tilde{\mathbf{y}}_{r+1}\},...,\alpha_{n}^{y}\{\tilde{\mathbf{y}}_{n}\} \end{bmatrix} = \begin{bmatrix} \tilde{\mathbf{Y}} \end{bmatrix} \left\{ \mathbf{a}^{y} \right\}$$
$$\begin{bmatrix} \tilde{\mathbf{y}} \end{bmatrix} = \beta_{i}^{l} \begin{bmatrix} \tilde{\mathbf{y}}_{\delta} \end{bmatrix} + \left(1 - \beta_{i}^{l}\right) \begin{bmatrix} \tilde{\mathbf{y}}_{c} \end{bmatrix}, \qquad 0 < \beta_{i}^{l} < 1$$

Find the values of coefficients $\{\alpha^{\omega}\}, \{\alpha^{\nu}\}\$ and $\beta^{l}_{i}, i = 1, ..., n$

Minimization problem

 $\min_{\left\{\boldsymbol{\alpha}^{\omega}\right\},\left\{\boldsymbol{\alpha}^{y}\right\},\beta_{k}^{l}}\Psi$

$$\Psi = \sum_{i=r+1}^{\hat{N}} \left(\frac{\hat{\omega}_i - \hat{\omega}_{i0}}{\hat{\omega}_{i0}} \right)^2 \quad \text{- target function;}$$

$$\hat{\omega}_i$$
 - modal frequency of *i*-th mode of the sample domain obtained by using the current set of optimization variables;

$$\hat{\omega}_{i0}$$
 - exact value of the modal frequency of *i*-th mode of the sample domain ;

The geometrical shape of the sample domain is selected freely by assembling together several CS

Gradients of the target function

$$\frac{\partial \Psi}{\partial \alpha_{j}^{y}} = \sum_{i=1}^{\hat{N}} \frac{\hat{\omega}_{i} - \hat{\omega}_{i0}}{\hat{\omega}_{i0}^{2} \hat{\omega}_{i}} \{\hat{\mathbf{y}}_{i}\}^{T} \left(\frac{\partial \left[\hat{\mathbf{K}}\right]}{\partial \alpha_{j}^{y}} - \omega_{i}^{2} \frac{\partial \left[\hat{\mathbf{M}}\right]}{\partial \alpha_{j}^{y}}\right) \{\hat{\mathbf{y}}_{i}\},$$
$$\frac{\partial \Psi}{\partial \alpha_{j}^{\omega}} = \sum_{i=1}^{\hat{N}} \frac{\hat{\omega}_{i} - \hat{\omega}_{i0}}{\hat{\omega}_{i0}^{2} \hat{\omega}_{i}} \{\hat{\mathbf{y}}_{i}\}^{T} \left(\frac{\partial \left[\hat{\mathbf{K}}\right]}{\partial \alpha_{j}^{\omega}} - \omega_{i}^{2} \frac{\partial \left[\hat{\mathbf{M}}\right]}{\partial \alpha_{j}^{\omega}}\right) \{\hat{\mathbf{y}}_{i}\},$$
$$\frac{\partial \Psi}{\partial \beta_{j}^{l}} = \sum_{i=1}^{\hat{N}} \frac{\hat{\omega}_{i} - \hat{\omega}_{i0}}{\hat{\omega}_{i0}^{2} \hat{\omega}_{i}} \{\hat{\mathbf{y}}_{i}\}^{T} \left(\frac{\partial \left[\hat{\mathbf{K}}\right]}{\partial \beta_{j}^{l}} - \omega_{i}^{2} \frac{\partial \left[\hat{\mathbf{M}}\right]}{\partial \beta_{j}^{l}}\right) \{\hat{\mathbf{y}}_{i}\}$$

Expressions of derivatives:

$$\begin{split} \frac{\partial \left[\tilde{\mathbf{M}}\right]}{\partial \alpha_{j}^{y}} &= -\left(\left\{\boldsymbol{\alpha}^{y}\right\}^{T} \left[\tilde{\mathbf{Y}}\right]^{T}\right)^{-1} \left(\left[0, \dots 0, \left\{\tilde{\mathbf{y}}_{j}\right\}, 0, \dots 0\right]^{T} \left[\tilde{\mathbf{M}}\right] \left[\tilde{\mathbf{Y}}\right] \left\{\boldsymbol{\alpha}^{y}\right\} + \left\{\boldsymbol{\alpha}^{y}\right\}^{T} \left[\tilde{\mathbf{Y}}\right]^{T} \left[\tilde{\mathbf{M}}\right] \left[0, \dots 0, \left\{\tilde{\mathbf{y}}_{j}\right\}, 0, \dots 0\right] \right) \left(\left[\tilde{\mathbf{Y}}\right] \left\{\boldsymbol{\alpha}^{y}\right\}\right)^{-1}; \\ \frac{\partial \left[\tilde{\mathbf{K}}\right]}{\partial \alpha_{j}^{\varphi}} &= -\left(\left\{\boldsymbol{\alpha}^{y}\right\}^{T} \left[\tilde{\mathbf{Y}}\right]^{T}\right)^{-1} \left(\left[0, \dots 0, \left\{\tilde{\mathbf{y}}_{j}\right\}, 0, \dots 0\right]^{T} \left[\tilde{\mathbf{K}}\right] \left[\tilde{\mathbf{Y}}\right] \left\{\boldsymbol{\alpha}^{y}\right\} + \left\{\boldsymbol{\alpha}^{y}\right\}^{T} \left[\tilde{\mathbf{Y}}\right]^{T} \left[\tilde{\mathbf{K}}\right] \left[0, \dots 0, \left\{\tilde{\mathbf{y}}_{j}\right\}, 0, \dots 0\right]\right) \left(\left[\tilde{\mathbf{Y}}\right] \left\{\boldsymbol{\alpha}^{y}\right\}\right)^{-1}; \\ \frac{\partial \left[\tilde{\mathbf{M}}\right]}{\partial \alpha_{j}^{\varphi}} &= 0; \\ \frac{\partial \left[\tilde{\mathbf{K}}\right]}{\partial \alpha_{j}^{\varphi}} &= \left(\left\{\boldsymbol{\alpha}^{y}\right\}^{T} \left[\tilde{\mathbf{Y}}\right]^{T}\right)^{-1} \left[diag(0, \dots, 0, \alpha_{j}^{z}, 0, \dots, 0)\right] \left(\left[\tilde{\mathbf{Y}}\right] \left\{\boldsymbol{\alpha}^{y}\right\}\right)^{-1} \\ \frac{\partial \left[\tilde{\mathbf{M}}\right]}{\partial \beta_{j}} &= -\left(\left\{\boldsymbol{\alpha}^{y}\right\}^{T} \left[\tilde{\mathbf{Y}}\right]^{T}\right)^{-1} \left(\left[0, \dots, 0, \alpha_{j}^{z}, \frac{\partial \left\{\tilde{\mathbf{y}}_{j}\right\}}{\partial \beta_{j}}, 0, \dots, 0\right]^{T} \left[\tilde{\mathbf{M}}\right] \left[\tilde{\mathbf{Y}}\right] \left\{\boldsymbol{\alpha}^{y}\right\} + \left\{\boldsymbol{\alpha}^{y}\right\}^{T} \left[\tilde{\mathbf{Y}}\right]^{T} \left[\tilde{\mathbf{M}}\right] \left[0, \dots, 0, \alpha_{j}^{z}, \frac{\partial \left\{\tilde{\mathbf{y}}_{j}\right\}}{\partial \beta_{j}}, 0, \dots, 0\right] \right) \left(\left[\tilde{\mathbf{Y}}\right] \left\{\boldsymbol{\alpha}^{y}\right\}\right)^{-1}; \\ \frac{\partial \left[\tilde{\mathbf{M}}\right]}{\partial \beta_{j}} &= -\left(\left\{\boldsymbol{\alpha}^{y}\right\}^{T} \left[\tilde{\mathbf{Y}}\right]^{T}\right)^{-1} \left(\left[0, \dots, 0, \alpha_{j}^{z}, \frac{\partial \left\{\tilde{\mathbf{y}}_{j}\right\}}{\partial \beta_{j}}, 0, \dots, 0\right]^{T} \left[\tilde{\mathbf{M}}\right] \left[\tilde{\mathbf{Y}}\right] \left\{\boldsymbol{\alpha}^{y}\right\} + \left\{\boldsymbol{\alpha}^{y}\right\}^{T} \left[\tilde{\mathbf{Y}}\right]^{T} \left[\tilde{\mathbf{M}}\right] \left[0, \dots, 0, \alpha_{j}^{z}, \frac{\partial \left\{\tilde{\mathbf{y}}_{j}\right\}}{\partial \beta_{j}}, 0, \dots, 0\right] \right) \left(\left[\tilde{\mathbf{Y}}\right] \left\{\boldsymbol{\alpha}^{y}\right\}\right)^{-1}; \\ \frac{\partial \left[\tilde{\mathbf{K}}\right]}{\partial \beta_{j}} &= -\left(\left\{\boldsymbol{\alpha}^{y}\right\}^{T} \left[\tilde{\mathbf{Y}}\right]^{T}\right)^{-1} \left(\left[0, \dots, 0, \alpha_{j}^{z}, \frac{\partial \left\{\tilde{\mathbf{y}}_{j}\right\}}{\partial \beta_{j}}, 0, \dots, 0\right]^{T} \left[\tilde{\mathbf{K}}\right] \left[\tilde{\mathbf{Y}}\right] \left\{\boldsymbol{\alpha}^{y}\right\} + \left\{\boldsymbol{\alpha}^{y}\right\}^{T} \left[\tilde{\mathbf{Y}}\right]^{T} \left[\tilde{\mathbf{K}}\right] \left[0, \dots, 0, \alpha_{j}^{z}, \frac{\partial \left\{\tilde{\mathbf{y}}_{j}\right\}}{\partial \beta_{j}}, 0, \dots, 0\right] \right) \left(\left[\tilde{\mathbf{Y}}\right] \left\{\boldsymbol{\alpha}^{y}\right\}\right)^{-1}; \\ j = r + 1, \dots, n \end{aligned}$$

Numerical results in 1D: the waveguide structure

Numerical results: Typical distortions of the shape of a propagating wave pulse in a rough equally spaced mesh

Numerical results: modal frequency errors of a sample domain

Numerical results: shape distortion of a propagating wave pulse in the model assembled of seven 10-node component substructures

Numerical results: modal frequency errors of a sample domain assembled of optimized CS

Wave pulse propagation through structures models made of synthesized domain models

Synthesized_10, 40dof.

			•			
	1 1 1					
5						
Λ	1 1 1		1 1			
Lage		00000	00000	00000	00000	000004
0 0 0						

Modal frequency errors of an uni-dimensional waveguide model assembled of 7 CS_10

Modal frequency errors of an uni-dimensional waveguide model

Numerical results in 2D

- a component substructure CS_5x5;
- b component substructure meshed by quadrilateral elements;
- c quadrilateral sample domain 13x13 nodes assembled of 9 CS_5x5

Numerical results: modal frequency errors of a sample domain

Relative modal errors of a quadrilateral elastic sample domain 13x13 nodes

Conclusions -1

- A regular approach has been presented for obtaining the mass and stiffness matrices of component substructures such that after assembling them to a larger model the convergence of modal frequencies is as high as possible;
- Once calculated, the component domain matrices can be used to form any structure and may be interpreted as higher-order elements or super-elements;

Conclusions -2

- The models able to present very close-to-exact modal frequency values of more than ~80% of the total modal frequency number can be obtained;
- The models can be used for modelling short transient wave pulses propagating in elastic or acoustic environments. The distinguishing feature is the <u>ability to present the wave pulse</u> by using very few nodal points per wavelength
- A limitation of the approach is that it works for regular shape domains and elements only. However, freely meshed domains can be used in the same model by using *domain decomposition* techniques