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DYNAMIC ANALYSIS OF STRUCTURES WITH
UNILATERAL CONSTRAINTS: NUMERICAL INTEGRATION
AND REDUCTION OF STRUCTURAL EQUATIONS

R. Barauskas

Department for Mechanics
Kaunas University of Technology, Lithuania

Direct integration of structural equations with unilateral

constraints. Consider the structural equation of motion
" -
MU+CU+KU-=R(t) , (1)

with the constraints upon the displacements
PU=4d, - (2)

and, when they are satisfied as an equality PU_db__O’ the auxiliary
constraints upon the m time derivatives of the displacements [

are imposed as
(k>

PU=dk,k=ﬁ. (=)

where M, C, K of dimension nxn and P of dimension pxn , p<n, are
the constant or time—dependent matrices, and U, R of dimension
nx1 - the vectors of nodal displacements and external forces. The
physical meaning of the constraints (2) is the non—penetration
condition of the contacting surfaces into each other in the case
when the pairs of possible contact points are known apriori. The
constraints (3) enable to represent the local impact condition
between the contacting points in terms of the impact restitution
coefficient.

Employing the Lagrange multipliers we obtain the system

MU+CU+RU+Pr =R ,
P s a (4)
(k>
PU =d , k=T,0 .

where only nonnegative values of Xo are allowed, i.e., each J-th
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component of the Lagrange multiplier vector ho is defined as

{xm.,if Aajzo,

0 , otherwise

X- =
oj

and integrate it numerically applying a single step scheme. If at
the time point t+Af the second relation of (4) is satisfied as an
equality and the third one can’t be satisfied for all or some

values of K , the values of velocities, accelerations and higher
k>

time derivatives U must be corrected.

Assuming that the corrections of the velocities are carried
out during a very short time interval AtB in comparison with the
duration of the integration step and employing the Carnot’'s
theorem we require that the variation of the kinetic energy of

the system because of introducing a new constraint should be

equal to the kinetic.energy of lost velocities %.AﬁTM Aﬁ . This
loss of energy is caused by the work done by the contact forces

during the time interval Ata . The motion of the system
corresponds to the minimum value of this work, or, what is the
same, to the minimum change of kinetic energy.'At the end of the
interval (t,t+Ata) the constraint upon the velocities of the
system must be satisfied, i.e., it is necessary to solve the
system

min % AU'M AU
with the constraint P Aﬁ =-PU+d

obtaining

A= BN Y HRT-q)

AU = - MNP ®N'PF)(PU-q,) .
<k

Similarly we obtain all A, and AU , k= m for the arbitrary

derivative order M . The physical meaning of the Lagrange

multipliers ks’ Kz, As"" is the normal impetus, forces,

derivatives of forces, etc., representing the action of the

constraints wupon the structure during the time interval

(t,t+at ).
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The impetus of the constraint forces in global coordinates

during the time interval (i,t+At ) is defined as

8,=-P8=-P@EWP)'(PI-4q) .

1

The forces of the constraints enabling to change the
acceleration value during the time interval (t,t+Ata) are defined

as

F=-PFr--P@WN'P)y(PU-q) .

4

The numerical integration scheme has been obtained employing

as a basis the generalized Newmark's scheme.The impetus of the
normal interaction forces SN during the time interval equal the

integration step At are approximately obtained as

At
FL v KH’
Stht = N € At + Kt-rAt 5
N 2 1

The normal forces FN ensuring the dynamic equilibrium at the

time point {+At, are obtained as

t +At ot +At t+At
FN =X, + X, 2

Reduction of structural equations with unilateral constraints.

The approach presented below is carried oaut by truncating
the dynamic contributions of the higher modes of the linear part
of the structure, simultaneously taking into account the remai-—
ning structural compliance of the dynamically truncated modes.

Consider the structural equation of motion (1) with a

proportional damping C = oM + fK . By solving the eigenproblem
2
(K'-aM)U=0",

o g s and the

eigenvectors, that are ordered as columns of the matrix Y. The

there are obtained the eigenfrequencies w,

presentation in modal coordinates is carried out by means of the

substitution
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U=YZ,
where Z - the generalized (modal) displacements of the structure.
m2
We present the vector of squares of eigenfrequencies as Sl
@z
and the matrix of eigenvectors as Y = (Y,,Y,], where the

submatrix Y2 and the subvector w: correspond to the modes
subjected to the dynamic truncation. After the truncation, the

equation (1) with the constraints (2) in modal coordinates takes
the form

b 2 = 5 2 T T
Iz +disg(u)z + disg(w,) z. = Y (R - P'r) ,

]

dieg(w;) z, = Y, (R - P'x) , (5)

I

T i g F o e o fomss U : :

where diag( B, diag(&f), diag(m:) dénofe the diaéonal matrices

containing the vectors H w:, and mz in their main diagonals,

and the relations diﬂg(#l)=YIC Y,,diag(wf)=YIK Y‘,diag(m:)=Y;K b 8

are held.

The system (5) is a reduced one in comparison with the
original equation, The values of the Lagrange multipliers X
denote normal interaction forces produced by constraints upon a

structure. They are obtained as

xz,) = @SF)I P 1,2+ PSR-4d,) .,

where
8, = Yaiag('/ 2)Y] = K*-v,disg('/ 2)¥7 ,
2 1

only nonnegative values AEZO being allowed.

The numerical examples illustrate the presented techniques

by considering free longitudinal impact vibrations of a beam
vibroconverter employing full and reduced structural models, and

a free motion of a vibrodrive.



