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Abstract. Semi-analytical finite element (SAFE) method is used for modelling 

propagation of elastic waves in waveguides of cross-sections uniform along the 

propagation direction. Dispersion curves, which express the relation between 

the circular frequency and the wavenumber of propagating wave were obtained. 

Linear proportional damping of propagating waves is taken into account. The 

results of simulation have been compared with theoretical and experimental da-

ta available in the literature.  
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1 Introduction 

Applications of guided waves have already a long history and variety of fields of 

usage especially for non-destructive-testing and ultrasonic measurement. Finite ele-

ment methods are widely used for modelling and simulation of wave propagation. 

Finite element structures based on 3D elastic elements are well-suited for modelling 

waves in bodies of complex geometry. The waves in infinite uniform structures such 

as rails, bars, beams, pipes, etc., can be efficiently treated by applying the semi ana-

lytical finite element (SAFE) method. In these conditions properties of waves along 

the length of the uniform waveguide can be well predicted [2]. 

The goal of this paper is to extend the SAFE technique for obtaining dispersion re-

lations in a damped waveguide. Dispersion curve shows the change of velocity of the 

wave with the change of circular frequency. SAFE methodology was first introduced 

by Lagasse [5] and Aalami [1]. Gavric assumed that displacement along the direction 

of a propagating wave is shifted by a phase of π/2 in relation with two dimensional 

displacement field in cross-section of the waveguide [4]. E. Viola, A. Marzani and I. 

Bartoli [7,8] developed this technique further introducing complex stiffness member 

into the model allowing modeling wave propagation in damped media. This paper 

explores the possibility to use a damping term in the wave equation in order to repre-

sent the wave damping phenomena.  

The SAFE technique combines the analytical solution of propagating wave along 

the length of the uniform waveguide with the numerical solution of 3D displacement 

field over the cross-section of the waveguide. SAFE has an advantage compared with 



conventional 3D FEM approach as it offers solutions at lower computational costs. 

Simultaneously it enables the modeling of very short waves, since the polynomial 

approximation of the displacement field along the length of the waveguide is avoided 

[8]. Any geometrical shape of the cross section is allowed as long as the shape re-

mains constant along the length of the waveguide. On the contrary, pure analytical 

solutions are feasible just for specific geometrically simple shapes of the cross-

section. 

2 Derivation the governing equation 

Consider the elastic wave in isotropic homogenous media. We say elastic in the sense 

that Hooke’s law for strain-stress relationship holds. The SAFE structural dynamic 

equation for the propagating wave reads as  

          0 UKUCUM  , (1) 

where  M ,  C ,  K  are the mass, damping and stiffness matrices corresponding-

ly.  U  is the nodal complex displacement vector of a harmonic wave as: 

     )(ˆ tkzieUU  , (2) 

where  Û  is the real vector of amplitudes, k is the wave number (a spatial wave 

characteristic having a measure unit of rad/m),   is the angular frequency (a tem-

poral wave characteristic, having a measure unit of rad/s), t represents time, i – imag-

inary unit, and z  is the coordinate along the direction propagation the wave.  

The first and the second time derivatives of displacements R: 

     )()(ˆ tkzieiUU   ,     )(2)(ˆ tkzieUU   . (3) 

Eq.(1)  now can be rewritten as 

         0ˆ)()( )(2   tkzieUKiCM  . (4) 

At any point of the waveguide displacements  U , strains    and stresses    and 

the relations between them can be expressed in Cartesian coordinates as: 
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with E being Young’s modulus and  Poisson‘s ratio. Expression for strains can 

be presented as: 
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where 
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In SAFE the finite element discretization is carried out only over the cross-section 

of the waveguide, therefore element shape functions of two variables ),( yxa , ),( yxb

and ),( yxc  describing the distribution of the amplitudes over the cross-section are 

introduced, [8].  

The scheme of the finite element discretization of the rectangular cross-section of 

the waveguide is shown in Fig. 1. We employ four-node first order Serendipity ele-

ment, the nodal displacements of which are presented as: 
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where ),,( kkk cba  are the displacements of k –th node along Ox, Oy and Oz direc-

tions and ),( yxNk  is the shape function of  k –th node, 



   Te cbacbad 444111   presents all displacements of all nodes of the 

element and matrix  ),( yxN  contains all shape functions: 

  )],()][,()][,()][,([)],([ 4321 yxNNyxNNyxNNyxNNyxN   (9) 
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The exponential term in (4) eq. represents the harmonic wave displacement in time 

and along the propagation axis. The solution is obtained by calculating all nodal dis-

placement a , b , c  amplitudes over the cross-section and one unknown for choice, 

  or k . If wavenumber k  is chosen as a free argument, then   as a function 

)(k  is obtained. If angular frequency   is chosen freely, the function )(k is to be 

found. The exponential term is the analytical part of the solution while amplitude 

vector  Û is found via finite element (FE) model. Combining the two terms together 

into one solution is the basic idea of SAFE method.  Û  is considered as a vector of 

amplitudes of all finite elements in the cross-section of a waveguide.  

Now the strain in the element can be expressed as 
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By introducing matrices ]),(][[]),(][[][ 1 yyxx yxNLyxNLB  and 

)],(][[][ 2 yxNLB z , relation (10) is rewritten as  

      )(
21 ][][ tkzi

ee edBikB   . (11) 

 

Fig. 1. Finite element representing the cross –section of the waveguide 



By using Hamilton’s principle it can be shown [8] that the terms in eq. (4) for a FE 

can be expressed as  
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where   is the mass density of the media. The global matrices of the elements of 

the cross-section are obtained by assembling the structural matrices as 
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where Nel defines the number of elements of the cross-section. 

The damping term ][C in eq.(1) is considered as directly proportional to the stiff-

ness and mass matrices as: 

 ][][][ KMC    , (17) 

where   and   are the  proportionality coefficients. For the sake of simplicity as-

sume that damping is proportional to the mass only and can be expressed as  

  
x y

T
e dxdyyxNyxNc )],([)],([][   (18) 

where   is the damping coefficient of the material. Then global damping matrix 

is obtained: 

   ].[][
1

McC
Nel

j
e 

  (19) 

The final form of eq. (4) reads as  

   0ˆ]][][][)]([)]([[ )(2
321

2   tkzieUkKikKKiCM  . (20) 

Finding a non-zero solution to this equation leads to corresponds to the generalized 

eigenvalue problem as 

   0][][][)]([)]([det 2
321

2  kKikKKiCM  . (21) 



It is required to solve the eigenvalue problem of dimensionality equal to total num-

ber degrees of freedom of the cross-section of the waveguide. The eigenvalue prob-

lem is solved either with a given , or with a given k . In case the wavenumber k is 

chosen freely, the eigenvalue problem is simplified as: 

    0ˆ)]([)]([)]([ 2  UkKiCM   (22) 

where )(kK matrix contains complex numbers and its value depends on wave-

number k . 

 As complex value eigenproblem is to be solved, its dimension doubles in order to 

encompass the real and the complex parts. By using notation: 
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eq. (23) can be rewritten as: 

    0][][ 11  QBA  . (24) 

In case the angular frequency   is chosen freely, the eigenproblem is simplified 

using  2A  and  2B  matrices and vector  Q  to another form as: 

    0][][ 22  QkBA  (25) 
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3 Results 

Consider a waveguide of rectangular cross-section 0.01 × 0.01 m. The material is 

aluminum with density 2700 kg/m3, Young’s modulus 9109.6 E Pa and Pois-

son’s ratio 32.0 . We investigate the convergence of angular frequency value as 

the mesh refinement over the cross-section is increased at selected constant wave 

number of 1 rad/m. The results for first five modes are shown below (Fig.2). 
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Fig. 2.  convergence of the wave angular frequencies values as mesh refinement is 

increased at wavenumber rad/m 1k a) first and second modes b) third mode c) fourth 

mode d) fifth mode.  

Consider the same waveguide , the cross-section mesh 10×10 in the undamped 

case  ( 0][ C  in eq. (22)). In   versus k  scenario eigenproblem (22) becomes 

    0ˆ][)]([ 2  UKM  . (27) 

There are 36331111 tdof solutions for , which are real numbers. Dispersion 

curves are obtained as in Fig.3a. For a comparison a dispersion curve extracted from 

the single_cross-section element model of the same waveguide ( 1×1 mesh) having 

12322 tdof  is presented in Fig. 3b. 1 ,0 FF indicate first and second flexular 

modes, 0T - first torsional mode, 0L - first longitudinal mode. 
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Fig. 3. Dispersion curves at cross-section discretization 10×10 (a) and single FE cross-

section 1×1(b) 

Consider the same waveguide, where the SAFE model of which formulated as 

(26). This means that the wave numbers are treated as unknowns while the values of 

circular frequencies are selected freely. Here we investigate the impact of damping on 

the obtained dispersion curves. In eigenproblem (26) 2×tdof complex solutions for 

wavenumbers are obtained. We are interested only in solutions expressed as 

)( biak  , while the solutions of the form )( biak   are discarded for they are 

meaningless because the solutions of this form would mean increasing amplitudes of 

propagating wave (here a  and b are scalars of the same signs). The imaginary part of 

the wavenumber describes the spatial attenuation of the wave envelope. The results 

with 1×1 single FE model grid in cross-section of a waveguide are shown in (Fig. 4) 

as different values of the coefficient  in the damping term ][][ MC   are used. The 

results are presented as angular frequency against the real part of the wavenumber. It 

can be seen that coefficient  has to take rather large values in order to exhibit a tan-

gible effect on the dispersion curve.  

L0 

T0 
F0, F1 



   
 a b 

  
 c d 

Fig. 4. Dispersion curves in case of damped waveguide: a) 0 , b) 100 , c)
410 , d)

610  

Solving (26) eigenproblem provides more physically feasible solutions when com-

pared to (25) equation. Fig.5 displays the results obtained by using 3×3 mesh cross-

section in the waveguide. Dependency )(k  provides less solutions than )(k . In the 

undamped case solutions only for propagating modes are extracted from (25) eigen 

problem while (26) eigenproblem Therefore a deeper investigation on angular fre-

quency versus complex wavenumbers k is required. It would be appropriate to plot , 

)Re(k  and )Im(k of the solutions in 3D space. Hao Liu suggest sorting of wave-

number in three-dimensional space by curvature of dispersion curves [6]. Further 

research on this subject is planned in near future. 

  

Fig. 5. Dispersion curves acquired on different dependencies: )(k  and )(k  



For testing the validity of the waveguide model we choose to calculate the phase 

velocity dependence against circular frequency on the copper plate having the follow-

ing properties: cross-section 2 210 × 51083.2  m2, density 8500  kg/m3, Young’s 

modulus 91099 E Pa, Poisson’s ratio 37.0 . The experimental measurement data 

considering Lamb waves in such plate were reported in [3]. Fig. 6 presents the results 

obtained by using 2×4 mesh over the cross-section in undamped case. The results of 

these computations are very close to experimental results presented in [3]. 

 

Fig. 6. Angular frequency versus phase velocity in copper plate 

4 Conclusions 

The SAFE method offers an efficient approach for modeling and simulation of wave 

propagation along uniform cross-section waveguides. The cross-section may be com-

posed of different materials or layers, isotropic or anisotropic. Here the SAFE method 

was successfully used to obtain dispersion curves in undamped, as well as, propor-

tionally damped structures, the convergence of the model and adequacy of the ob-

tained results were demonstrated. However, deeper insight into proper sorting for 

wavenumbers obtained in the solution and automatic grouping of the obtained modes 

into proper categories is needed. The assumption that angular frequency is taken as a 

selected real number is similar to the analysis of forced wave propagation, discussion 

on which is not included in this paper. This topic is to be covered in near future. It is 

worth reminding that in this research we considered a very simple approach to damp-

ing, the term of which is proportional to mass matrix only. 
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