34

Education in Finite Element Analysis and
Applications in Computational Grid Networks

Rimantas BARAUSKAS

Kaunas university of technology, Dept. Systemn analysis,
Studentu 50-407, 3031 KAUNAS, Lithuania
rimantas. barauskas@ktu. It

Finite element analysis (FEA) is the most popular technique for presenting the behavior of physical systems in “virtual reality”. At
present time it is commonly realized as a fechnology of the physically based modeling rather than the numerical finite element
method carrying the name and comprising the mathematical kernel of the technology. The distinguishing feature of education in
FEA lies in its interdisciplinary nature. Computational grids are offering essential profits and opportunities in teaching, research, as
well as, performing practical computations and by integrating FE applications into the design and development of real engineering
objects and systems. The advance in unification of educational course materials, visualized examples, easy access to up-to-date
software systems and libraries can be regarded as several expected goals of the above mentioned prospective efforts. This work
presents the basic ideas of structure and implementation of educational twols of FEA into computational grid environments.

Finite element method, computational grid, education

1. INTRODUCTION

Grids are “super Internets” for high-perfor-
mance computing: worldwide collections of high-
end resources such as supercomputers, storage, ad-
vanced instruments and immersive environments.
These resources and their users are often separated
by great distances and connected by high-speed net-
works. Grids bring together geographically and
organisationally dispersed computational resources,
such as CPUs, storage systems, communication sys-
tems, real-time data sources and instruments, hu-
man collaborators [1].

According to IBM’s definition, “a Grid is a col-
lection of distributed computing resources available
over a local or wide area network that appear to an
end user or application as one large virtual comput-
ing system. The vision is to create virtual dynamic
organizations through secure, coordinated resource-
sharing among individuals, institutions, and re-
sources. Grid computing is an approach to distrib-
uted computing that spans not only locations but also
organizations, machine architectures and software
boundaries to provide unlimited power, collabora-
tion and information access to everyone connected
te a Grid.” [2]. Grids are new: many of the enabling
technologies have not yet been invented.

Finite element analysis (FEA) is the most popu-
lar techniques for presenting the behavior of physi-
cal systems in “virtual reality”. At present time it is
commonly realized as a technology of the physically

based modeling rather than the numerical finite ele-
ment method carrying the name and still compris-
ing the mathematical kernel of the technology. At
present time the FEM codes are able to cope with
wide spectra of problems (nonlinear, coupled, multi-
scale, multi-physics). However, the codes involv-
ing adaptive meshes, multi-level solvers, parallel and
distributed execution are rather complex and diffi-
cult to interfere and to modify. Learning curves for
users are steep and generally the finite element mod-
eling is close to a professional activity based on deep
knowledge of the FEA mathematical background,
thorough understanding of the engineering essence
of the problem as well as, experience in using FEA
codes.

As FEA has already achieved high level of per-
fection, many commercial systems are available. At
present time in Lithuanian universities ANSYS,
ALGOR, COSMOS, ABAQUS, DIANA, LSDYNA,
AUTODYN, FEMLAB are used. Of importance are
the data interfaces between the FEA systems and
various pre- and post processing tools (TrueGrid,
PATARAN) and CAD systems (CATIA, SolidWorks,
AutoCAD, CADKEY). Generally, they are not sim-
ply alternative programs used for solving the same
tasks. Though designed basing upon the same basic
finite element scheme, they provide many unique
features and are oriented for different classes of en-
gineering problems. At present time, data interfaces
are elaborated and, in principle, the data can be
“transported” among different programs. However,




35

the interaction level is still far below the real func-
tional unification, and only the analyst is respon-
sible to decide if the whole computation process has
been organized correctly. The more advanced imple-
mentations have been performed in mechanical de-
sign systems (e.g., CATIA, Microstation, etc.), where
linear elasticity and field problem solution processes
(meshing-> FE model generation —> loading —=> so-
lution -> post-processing) nowadays are fully inte-
grated into corresponding CAD systems.

This work regards the finite element method
{FEM) code as a grid application. Grid environment
from application developer prospective offers such
attractive features as open environment (coupling
with external modules via standardization of inter-
faces), high performance communication libraries,
simpler code development, cooperation with other
developer groups and broad user base [3].

2. MAIN FEATURES OF EDUCATION
INFEA

The Finite Element Analysis (FEA) is one of the
main disciplines of Computational Science and En-
gineering (SCE) study program taught at many uni-
versities. CSE is the multi-disciplinary field of com-
puter-based modeling and simulation for studying
scientific phenomena and engineering designs [4]. It
requires methods from computer science, applied
mathematics, and the respective application fields.
Moreover, it often demands the use of high perfor-
mance parallel computers able to cope with the diffi-
culty and size of the problems. It is different from
Computer Science. Computer Science focuses on
topics that are essential to build computer hardware
and software, as well as, complete information sys-
tems. Typical topics of computer science include:

+ computer architecture and network archi-
tecture;

= operating systems, data bases, software engi-
neering, etc.;

= finding fast algorithms for core problems
(sorting, searching, etc.) .

Thus, computer science could be described as
the art of building and using computers and infor-
mation systems. In contrast, Computational Science
and Engineering means using computational meth-
ods to solve specific problems in science and engi-
neering. It provides a basic education in the field of
CSE to be able to follow an academic or profes-
sional career in this field.

The distinguishing feature of education in FEA
lies in its interdisciplinary nature including the fol-
lowing basic branches of knowledge:

» The basics of the numerical finite element
method in application for different types of differ-
ential equations describing different physical envi-
ronments;

» The solution approaches and strategies for
real engineering problems;

» The general numerical methods and algo-
rithms used in FEA;

s Computer implementation including pre- and
post-processing, results visualization, etc.

Computational grid environments are offering
essential profits and opportunities in teaching; re-
search, as well as, performing practical computa-
tions and by integrating FE applications into the
design and development of real engineering objects
and systems. The advance in unification of educa-
tional course materials, visualized examples, easy
access to up-to-date software systems and libraries
can be regarded as several expected goals of the
above mentioned prospective efforts.

Educational tools of FEA implemented into
computational grid environments should consist of:

= Common education-through-distance tech-
niques (course materials, examples, problems and
solutions bases, reference materials to accompany-
ing courses);

» The “numerical laboratory” base enabling to
implement the necessary computational schemes and
strategies — from simple examples during undergradu-
ate education until complex schemes used in advanced
courses and post-graduate research. As generally the
implementations from “zero level” are time consum-
ing and require numerous procedures, that can be pre-
pared in advance, the grid should ensure the access
to necessary software packages, function libraries,
compilers and visualization tools. The desired pro-
spective is to ensure the student or user to have the
possibility with minimum routine work to design com-
plex computational schemes using non-linear mate-
rials, elements, contact interactions comparable to the
ones used in commercial software packages. At the
same time the researcher may have much higher level
of flexibility in “non-standard” applications.

» The access to commercial FE software and
license management.

3. THE STRUCTURE OF THE FEA
COMPUTATIONAL GRID
ENVIRONMENT

Conceptually the learning-oriented FEA soft-
ware is not essentially different from the FEA ap-
plication environment used for solving practical real
engineering problems. The characteristic feature of




36

the present situation is the availability of many li-
braries and program codes, multi-level solvers, as
well as, parallel versions of FEA codes. Among them
are commercial software (ANSYS, LSDYNA) hav-
ing their user interfaces, the mathematically oriented
computational environments MATLAB + FEMLAB
and many case oriented programs and libraries in
C++, FORTRAN, etc. '

3.1 Virtual organizations

In education process, a lot of students, post
graduates, teachers and researchers come together
to create and use the FEA software in order to imple-
ment their specific tasks. A number of participants
want to share resources in order to perform some
task. Furthermore, sharing is more than file or data
exchange: it can involve direct access to remote soft-
ware, computers, data and other resources. This shar-
ing is highly controlled, with resource providers and
consumers defining clearly just what is shared, who
is allowed to share, and the conditions under which
sharing occurs. A set of individuals and/or institu-
tions defined by such sharing rules form what is
called a virtual organization (VO) [5].

One of possible divisions of users into actual
and virtual organizations is presented in Fig.1.

VO1: FEA performed by using commercial FE
software. The usual practice in using the commer-
cial FEA software is to present a problem in terms
of a script written in corresponding input language
of aprogram (e.g., APDL for ANSYS, keyword files
for LSDYNA, etc.). The grid services should allow
running scripts on remote hosts (may be, on effi-
cient parallel computers or clusters) and the neces-
sary transport of input, as well as, results data;

VO2: FEA by implementing compultational pro-
cesses in mathematically oriented environments
(MATLAB+FEMLAB) and by means of program-
ming in high-level languages (C++, FORTRAN).
This way of problem solution is necessary for “non-
standard” applications, where using commercial
codes 1s inconvenient or cumbersome. Furthermore,
the approach is highly advised for education in FEA
in order to enable the student to implement some
steps of the FEA procedure or to design a computa-
tional strategy for a given research problem. Two
levels can be distinguished in VO2.:

» Basic functions level (element procedures,
structure assembly functions, constraint equations,
material (constitutive) models, etc.);

= Computational strategy development level
(iterative schemes for non-linear problems, semi-
analytical approaches, time integration schemes,
structural fracture and failure processes, etc.).

VO3: Usage of numerical and graphical librar-
ies is closely related with tasks performed in VO2
as the finite element method prescribes only the
overall scheme of the solution. A number of accom-
panying numerical software: sparse solvers, array
operations, data processing is still necessary to ap-
ply during the solution process. The visualization
of results is also one of accompanying actions in
any FEA computation.

VO4: Learning through distance: access to
electronic textbools, tutorials and samples can be
regarded as usual distant learning tools. However,
the inherent feature of education in FEA is the par-
ticipation of each student to a certain extent in VO1,
V02, VO3 for acquiring necessary understanding
and experience of practical computations.

There can be much more task groupings, how-
ever, here we do not intend to present all possible
aspects of FEA and education directions in it.

The real users or organizations can be assumed
as consisting of

“Students” — persons seeking to get basic or
advanced education in FEA. Their primary tasks are
to study educational materials and perform the nec-
essary tasks given by the teacher. The students par-
ticipate basically in VO4 and VO2, or they can par-
ticipate in VO1 with limited user rights;

“Post-graduate students” and “researchers”
form the user sets interested basically in perform-
ing practical analysis problems by using FEA soft-
ware or in doing programming of complex analysis
tasks. The rights of the two real user groups may be
different depending upon licensed resources avail-
able.

Sharing relationships can vary dynamically over
time, in terms of the resources involved, the nature
of the access permitted, and the participants to whom
access is permitted. The relationships do not neces-
sarily involve an explicitly named set of individu-
als, but rather may be defined implicitly by the poli-
cies that govern access to resources. For example,
an organization might enable access by anyone who
can demonstrate that they are a “researcher” or a
“student”.

3.2 Grid architecture

The general layered grid architecture includes
the following layers[5]:

The Fabric layer (the lowest one) provides the
resources to which shared access is mediated by
protocols: computational resources, storage systerns,
catalogs, network, etc. Fabric components imple-
ment the local, resource-specific operations that
occur on resources (whether physical or logical) as
a result of sharing operations at higher levels;




37

TABLE 1: The sample Grid services used to construct applications of Figure 1

FEA using FEA by implementing Using numerical and | Learning
licensed computational processes in graphical libraries through
| commercial mathematically oriented distance:
! software environments (IMSL, OpenGL)
= (MATLAB+FEMLAB), access to
: electronic
High-level programming textbooks,
languages (C++, FORTRAN ) .
tutorials and
samples
. Collective Input language Function library organization and retrieval, multi-
licati service, source language compilation, access to visualization tools
(app'tl‘catmn- data and results .
SEECUS) transport
- Collective Resource discovery, resource brokering, system monitoring, community authorization,
(generic) certificate revocation, help and content information
Resource Access to computation; access to data; access to information about system’s structure, state,
performance
Connectivity Communication (IP), service discovery (DNS), authentication, authorization, delegation
Fabric Storage systems, computers, networks, code repositories, catalogs
VO 1: VO 2:

FEA using hicensed commercial software
(SYS, LSDYNA)

FEA by implementing computational
processes in mathematically oriented

environments (MATLAJB""FMAB}M
< The MathiNorks . '
HMATLAB C:i1y

EHATII0N A0 DD AT
T MRTLA EXIMUR AR st nily

e

; VO 3 VO 4:
Using numerical and graphical libranies Learning through distance:
Access to electronic textbooks,
= e & tutorials and samples
i izt e B utincte P ol Cormrg.
s Rt ]
iz : e
Tha Jadustey's Fosinidistita for =
. High Pesfurance Grrgphics

Students:
smay create programs in VO2
smay access datain V4

ost-graduates:

wmay create programs in VO2

=may access licensed programs
in VO1

srnay access libraries in VO3

Researchers:

FIGURE 1: An actual organization can participate in one or more VOs by sharing some or all of its
' resources. We show actual organizations (the ovals), and VOs (the rectangles), which link participants in
the finite element programming and analysis field in different kinds of activities.




38

The Connectivity layer defines core communi-
cation and authentication protocols required for grid-
specific network transactions. Communication pro-
tocols enable the exchange of data between Fabric
layer resources. Authentication protocols build on
communication services to provide cryptographi-
cally secure mechanisms for verifying the identity
of users and resources. Communication requirements
include transport, routing, and naming;

The Resource layer builds on Connectivity layer
communication and authentication protocols to de-
fine protocols, Application Program Interfaces (APT)
and Software Development Kits (SDK) for the se-
cure negotiation, initiation, monitoring, control, ac-
counting, and payment of sharing operations on indi-
vidual resources. Resource layer implementations of
these protocols call Fabric layer functions to access
and control local resources. Resource layer protocols
are concerned entirely with individual resources and
hence ignore issues of global state and actions across
distributed collections; such issues are the concern
of the Collective layer discussed next;

The Collective layer contains protocols and ser-
vices, APIs and SDKs that are not associated with

any one specific resource but rather are global in
nature and capture interactions across collections of
resources. It implements a wide variety of sharing
behaviors without placing new requirements on the
resources being shared.

The final, Applications layer comprises the user
applications that operate within a VO environment.
Applications are constructed by calling upon, ser-
vices defined at any layer. At each layer, there are
well-defined protocols that provide access to some
useful service: resource management, data access,
resource discovery, etc.

4. CONCLUSION

The paper presents the idea and sample struc-
ture of implementation of Finite element education
and analysis tools into computational grid environ-
ments. The main expected advantages are legal, easy
and standardized access to up-to-date software sys-
tems and libraries and the integration of educational
course materials with tutorials and examples at dif-
ferent levels of programming.

REFERENCES

[1] Schoolof computing, University of Leeds, http://www.comp.leeds ac.uk/cgi-bin/sisfext/staff_pub.cgi/sarfraz.html?cmd=displaystaftipagetop.

[2] L.J.Zhang, 1.Y.Chung, Q.Zhou, Developing Grid computing applications, Part 1, Introduction of'a Grid architecture and too'kit for building
Grid solutions, http:/fwww-106.1bm.com/developerworks/webservices/library/ws-grid1

[3] K.Banas, J. Ptazek, Concepts for implementing adaptive finite element codes for grid computing, Cracow Grid Workshop, 5-6 November,

2001,

[4] International Master’s Program at the Technische Universitit Miinchen, hitp://www.cse.tum.de/applying/fag.html
[5] .Foster, C. Kesselman, S. Tuecke. The Anatomy of the Grid. Enabling Scalable Virtual Organizations, http:#/www-106.ibm.com/developerworks/

grid/library/gr-fly. himl#IDASBGQB

|
K
| =




