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ABSTRACT: The paper is concerned with sensitivity
analysis of a rotational motion sensor that uses Coriolis
effect and a vibrating quartz tuning fork to sense angular
rate. The finite element model is employed to both studying
the system’s measurement performances and appreciation of
the sensitivity of these to the various influencing effects. The
performance of computations has been enhanced by means
of a dynamically reduced model based on truneation of
dynamic contributions of higher modes of a non-rotating
structure, The indeterminacy of the measurement results
due to the change in dynamic properties resulting from the
deviations of resonance frequencies caused by geometrical
errors has been studied. The sensitivity functions have been
derived by using gradient technique basing upon the finite
element model.
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1 Introduction

In the analysis of measurement systems we are concerned
with many aspects of their behaviour: response to input
signals, response to disturbances, and the sensitivity of
these to parameter changes. One of the foremost problems
in measurement systems analysis and synthesis is that of
the reduction of sensitivity of the systems response to the
parameter variations attributable to the tolerances allowed
to the device. Sensitivity analysis should be undertaken
by the design-oriented methods. This implies the use of
higher level of abstraction models that deal not only with
fundamental principles underlying measurement systems
but also with principles of treatment of deviations and
uncertainties based on the analysis of instrument structure
and the effects of sensitivity to parameters variations and
external influences. In many cases the models that are
formed on basic physical theory and phenomena of the
relevant systems should be completed by more
comprehensive consideration.

2 Angular Rate Sensor and its Model

We consider a computational model of the GyroChip
family sensor that uses a micromachined quartz element -
a'vibrating quartz tuning fork - to measure angular
rotational velocity [1, 2].
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Using the Coriolis effect, the rotational motion about the
sensor’s longitudinal axis produces a DC voltage
proportional to the rate of rotation. The description and
performance specifications of the sensor are available [1,
2]. The sensor representation given [1, 2] allows
definition of organic components of a sensor and
describes their qualities and interactive behaviour.

Having determined a physical effect and the possibility of
a sensing technique, adequately formulated models enable
existing systems to be studied in modes of operation in
which they may be called to provide and allow the
modelling process to better simulate the system by
providing numerical understanding,.

The dynamic equation of the finite element of the tuning
fork is obtained as [3, 4]
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where [M], [C], [K], [K,], [K;], matrices of the element,
{U}- nodal displacement vector, {F} - nodal excitation
forces caused by the piezoelectric effect, {X} — vector of
nodal coordinates of the finite element.
The quartz tuning fork has a number of modes of
vibration from which actually only four essentially
different shapes (displayed on Fig. 1) are of interest for
the angular velocity meter application.

3 Design Sensitivity Analysis

As the mning fork of the angular velocity meter is a
mechanical vibrating system with high value of the
mechanical ~Q-factor, its dynamic features and
performance  depends  significantly upon natural
frequencies and shapes of vibration. The influence of the
design parameters can be most effectively carried out by
employing gradient techniques.

The finite element matrices of the fork can be
presented as functions [K(5)],[M(5)] of the geometric
parameters & of the structure. The relations between
small variations of design parameters and corresponding
variations of natural frequencies of vibration are obtained
by using the free vibration equation
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Mode 3, out-of-plane,
Natural frequency 8110Hz

(@)

Mode 8, in-plane
Natural frequency 25398Hz
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Sensitivity is defined in terms of a sensitivity function,
which denotes the sensitivity of the system design
decisions to variations in the system parameters, The first
variation of (2) gives the following relations:
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where [C]=1{y} [a{b} 'a{b}J{y‘} is the matrix of

sensitivity coefficients, ¢ =} - square of the i-th
angular natural frequency, {y,} - the vector describing the

i-th shape of vibration.

The sensitivity functions obtained can be further used to
bring about modifications needed in the structure’s
dynamic properties and determine which modifications
would be the most effective for the desired change.

The analysis of obtained sensitivity coefficients indicates
that the stiffness of the supporting bar described by its
length and width has the main influence upon the
difference of the 3 and 4™ natural frequencies. The plot
of the values of the two frequencies against the value of
parameter / (half length of the supporting bar) is presented
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Mode 4, out-of-plane,
Natural frequency 8113Hz

(b)

Mode 9, in-plane,
Naural frequency 25400Hz

(d)

Fig. 1

in Fig.2. At parameter value [=~1.54mm natural
frequencies of 3" and 4™ modes are equal, and this
requires a special attention in dynamic analysis as here
the magnitudes of the two natural frequencies may
counterchange as a result of small variation of the
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geometric parameter /.

4 Reduction of Dynamic Equations

In case of moderate velocities of rotation of the frame the
modal coupling and resonance phenomena of the fork in
the rotating frame can be much better understood by
expressing the equations in modal coordinates of the non-
damped and non-rotating structure, the vibration modes of
which have a clear interpretation.

Moreover, the aim of having the modal properties of a
non-rotating structure as target functions in geometrical
design of the fork is seen as more natural and convenient.
We denote by ,,@,,...w, the natural frequencies of the

fork and by [Y] the matrix containing in its columns the

natural forms of vibration of a non rotating fork. By
neglecting the effects caused by angular acceleration and
centripetal forces, the steady vibration of the fork in the
non-rotating frame is governed by the equation in terms

of modal displacements {z} as
(2} +[diag(u)] (2} + [ diag(@?)]{z} =

,- 7- @
=20[r] [G][¥){z} +[¥] {F}

where g, 4,,...1, the modal damping coefficients
obtained as i, =ca+pPw’ and the substitution
{U}=[r]{z} and relations [Y]r [M][¥]=1:1.

[Y]T{K][Y]=[diag(coz}} have been employed. Though
in modal coordinates, the equations are still coupled as the
matrix [¥] [G][¥] is non-diagonal.

Further simplification of the equations can be carried out
by neglecting the dynamic contributions of higher modes
of the fork. We partition the modes and modal
displacements into two sets so that the displacement
vector can be presented as {U}=[Y,]{z}+[1,]{z,}, and

truncate the terms corresponding to inertial and damping
forces of the second modal set. Finally the following
equation in terms of modal displacements of only first set
is obtained as

() +([diag )]+ 200 ] [G] K]z} +
+[ diag(e) J{z) =200 [GlS I F}+[] {F);

where
[5,1=[K]" (V1 diag(1/w})][¥;]" is the higher modes

compliance matrix.

The model consisting of piezoelectric shell elements has
been programmed in ANSYS and FOTRAN. The reason
of application  several  different  programming
environments was that the ANSYS program does mnot
allow obtaining the harmonic vibration response of the
rotating structure. Therefore the structural stiffness and
mass matrices have been printed to files and taken into a
FORTRAN program that was written to perform

(%)
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Fig.3

calculations by using the above-presented dynamically
reduced model,

The accuracy of the solution depends upon the number of
modes taken into consideration. We always can obtain the
exact solution when solving equations with all modes
participating with their dynamic contributions, If the
solution is close to the exact one with taking into account
the dynamic contributions of only few modes, the
participating modes are decisive for the operation law of
the angular frequency meter.

The detailed analysis of the influence of modes by adding
them one by one to the dynamic model leads to the
conclusion that the 9x9 reduced dynamic model obtained
by taking into account the dynamic contributions of only
first 9 modes is accurate enough and can be used instead
of the full 1326x1326 original model. It can be noticed
that 8® and 9" dynamic modal contributions though
excited far below the resonance are important for proper
representation of the dynamic features of the system. The
time savings during calculations of amplitude-frequency
and phase-frequency curves of the model are really
impressive,

5 Analysis of the Dynamic Behaviour

In order to perform its function as the sensitive element of
the angular frequency meter, the fork is excited by means
of the applied electric voltage over one half of the fork
(input tines). The frequency of excitation of the fork is




close to the natural frequencies of resonant out-of-plane
modes 3 and 4 (Fig.1), though the modes are not excited
because of the in-plane action of electromechanical
excitation forces. For in plane vibration, the excitation
frequency is far below the resonance, so they may be
regarded as non-resonant.

In rotating frame, in-plane vibration of input tines excites
both neighbouring modes 3 and 4. The vibration law of
output tines depends upon the mutual position of values
of natural frequencies /; and £, on the frequency axis.

If f3=;, the out-of-plane vibration of output tines will not
be excited because of eliminating each other contributions
of modes 3 and 4. However, the resonant out-of-plane
vibration will be excited in input tines. This mode of
operation is based on a very narrow allowable frequency
range in order to keep the output vibrations essentially on
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the peak of AFCH curve. Similar dynamic properties can

be obtained in case when the fork is excited over all the
surface of the fork. In a rotating frame, the in-plane

vibration would excite only mode 3 of out-of-plane
vibration;

The optimum separation of natural frequencies f; and £,
by selecting proper geometrical parameters allows
obtaining out-of-plane vibration of output tines, the
AFCH of which has a plateau or a local minimum on its
top. The tolerance of the excitation frequency is allowable

in wider range, Fig.3, where U,,U/, denote the

amplitudes of vibration of input and output tines.

If /3 is very close, but not equal to f; , the out-of-plane
vibration of output tines will be excited by rotation of the
frame. The phase of vibration of output tines will depend
upon the mutual positions of natural frequencies of
symmetrical (f3) and anti-symmetrical {f;) out-of-plane
modes. As the frequency values of them interchange (i.e.,
J1 becomes greater as f;) , the phase of vibration of output
tines changes through value 7, Fig.4.

It means, the effect is the same as the change of the sign
of angular frequency of rotation of the frame and can lead
to misinterpretation of the direction of the rotation
velocity.
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