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Abstract. The focus of the  work is to analyse and improve the accuracy of space and time 
discretized rectangular finite element models for transient acoustic and elastic wave 
propagation. The   propagation of the typical ultrasonic pulse excited on the boundary of the 
environment is under investigation. The dispersion relations of finite element models have been 
significantly improved by selecting appropriate form of the mass matrix. As a consequence, only 
7-8 elements per wavelength of the main harmonic component oh the pulse suffice to represent 
satisfactory the wave propagation law. As contraindication for using such an approach  is a non-
diagonal form of the mass matrix requiring to use iterative methods for solving the linear 
algebraic equation system at each time step. However in 2D and 3D cases the increase of the 
element size results in considerable savings in memory and computational time even if  iteration 
at each time step is necessary.  With increased element size the accuracy requirement instead of 
stability is dominating for  the selection of the time step. The explicit time integration schemes in 
the case of non-diagonal mass matrix have no computational advantage, and implicit ones can 
be discussed. The  performance of several numerical integration schemes has been evaluated  in 
this study. From the point of view of combined performance and accuracy criterion, the 3-rd 
order generalized  Newmark's scheme and time discontinuous Galerkin finite element method 
have been selected.   
 
 
 
 



 
 

Rimantas Barauskas 

2 

1 Introduction 

In a wide range of ultrasonic non-destructive testing and measurement applications, the 
wave propagation law in acoustic or elastic environment is of primary interest. It is  necessary for 
selecting proper  topology of ultrasonic transducers, understanding the features of received 
signals influenced by cracks or internal irregularities in the bodies of investigation, etc. The 
above mentioned phenomena are described by well-known wave and dynamic elasticity 
differential equations. However, the computational structural models obtained on the base of 
them are still challenging because of their huge dimension necessary to represent adequately the 
shape and time law of the wave the length of which is much smaller than the spatial dimensions 
of the body.  

In this study we focus our attention on transient behaviour of the propagation of the typical 
ultrasonic pulse excited on the boundary of the environment. During the last decade a huge effort 
has been made to create the techniques and software able to solve realistic problems of  
ultrasonic wave propagation. The available publications on the problem present several  different 
approaches.  The finite difference schemes able to associate different density and elastic 
parameters with each grid point, to take into account the boundaries between different materials 
and arbitrary geometrical shape of the region  are referenced in [1]. The approach has been 
implemented as WAVE2000 computational ultrasonics software able to solve 2D problems in 
powerful multiprocessor computing environments, as well as, in PC’s. The approach is based on 
efficient  algorithms of step-by-step computation of  the structural displacements over all the 
structure and the time interval. 17 mesh points per shortest wavelength have been used, and the 
time step ensuring the stability of the explicit time-marching scheme has been estimated as 

2 2
l t

xt
v v
Δ

Δ ≤
+

 , where ,l tv v  -  velocities of the longitudinal and shear elastic waves. The stability of 

the explicit numerical integration scheme being ensured, the accuracy requirements are usually 
satisfied as well - with 17 points per wavelength the maximum free vibration frequency 
represented  by the structural model is usually much higher than the highest harmonic 
component of the wave of interest.  The combination of finite difference and finite element 
approach has been earlier described in [2].  

The three-dimensional problems seem to be most realistic to approach by using  the 
boundary integral equation techniques the transient formulations and implementation of which 
have been mentioned in [3],[4] for acoustic and in [5] for elastic waves.  The space and time step 
requirements are similar as mentioned above for the finite difference approach, however, only 
surface of the body has to be discretized. Moreover, adaptive meshing can be employed by using 
refined meshing in the vicinity of geometrical irregularities. The best results can be expected by 
combining properly the finite element and boundary element approaches. The boundary integral 
method is very efficient  for presenting the homogeneous regions, however, the sources of 
numerical instabilities, excessive oscillations of the solution and the measures to cope with them 
at present are not so clearly understood as for the finite element models. On the other hand, the 
zones containing non-homogeneous  materials are much easier to represent by using finite 
element models.  

This work aims to analyse and improve the accuracy of space and time discretized 
rectangular finite element models for transient acoustic wave propagation. In uniform finite 
element models containing identical rectangular elements the solution algorithms are very 
similar to those used in finite difference schemes as no structural matrices are necessary to 
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assemble and calculation formulae for each grid point can be easily written. On the other hand, it 
is easy to couple such models with regions described by means of free finite element meshes, as 
well as, by boundary element models. It has been shown in [6],[7] that dispersion relations of 
uni-dimensional finite element models can be significantly improved by selecting appropriate 
form of the mass matrix. As a consequence, only 5-7 elements per wavelength instead of 17 
often suffice to represent satisfactory the wave propagation law. As contraindication for using 
such an approach  is a non-diagonal form of the mass matrix requiring to use iterative methods 
for solving the linear algebraic equation system at each time step. However in 2D and 3D cases 
more than 3 times increase of the element size result in considerable savings in computational 
time even if  iteration at each time step is necessary.  The time step ensuring stability of the 
explicit numerical integration schemes is also to the same ratio larger because of the lower value 
of the highest free vibration frequency represented by the model. In the case of coarser meshes 
the accuracy requirement and not the algorithmic stability is governing the selection of the time 
step. On the other hand, the explicit time integration schemes in the case of non-diagonal mass 
matrix have no computational advantage, and implicit ones can be discussed. The  performance 
of several numerical integration schemes is being evaluated  in this study.   

2 The wave equation and the element size selection 

The acoustic wave propagation in region V bounded by boundary  S is described by means of 
the transient scalar wave equation [8] 

2
2

2( , ) 0 ,uE u t V
t

ρ ∂∇ − = ∈
∂

x   ,     (1) 

with prescribed boundary conditions  
1

2

( , ) ,
( , ) ,

u t u S
u t q S

n

= ∈
∂

= ∈
∂

x
x                                                       (2) 

and initial conditions 0 0( ,0) , ( ,0)u u u v= =x x    ,          (3) 
where ( , )u tx  - velocity potential,  x – spatial co-ordinate,  t – time, ,E ρ – bulk modulus and 
density of the material,  ,u q  - prescribed boundary values of the velocity potential and of the 

component of the velocity normal to the boundary. The wave velocity is Ec
ρ

= .  

 The equation of a finite element is obtained on the base of (2),(3),(4) by using Galerkin 
weighted residual techniques [9] :  
 
[ ]{ } [ ]{ } { ( )}e e e e e t+ =M U K U Q ,  (4) 
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are the “conductivity” matrix,  mass matrix and excitation vector of the element correspondingly, 
[ ]N  - form function matrix of the element. .  

The physical meaning of the excitation vector { }eQ is the prescribed normal velocity on the 
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boundary 2
eS  of the element. Zero normal velocity corresponding to the value { } 0e =Q  serves as 

the “natural” boundary condition.  Matrix [ ]e
CM  is the consistent mass matrix of the element. 

Alternatively, the “lumped” (diagonal) version of the mass matrix [ ]e
LM  can be used  obtained by 

distributing the  mass equally between the nodes of the element. It has been found in [6],[7]  that 
neither of the two matrices is optimum for acoustic, as well as, elastic wave propagation 
problems, and the linear combination of them can improve significantly the dispersion relations 
represented by the model. The demonstration of this can be seen in Fig.1,a,b,c, where the family 
of curves in each figure represent how the values of natural frequencies of the rectangular 
acoustic region depend upon the mesh refinement expressed by number of points N per side of 
the rectangular. The natural frequencies presented in Fig.1a  correspond to mass matrix 
[ ] 0.75[ ] 0.25[ ]e e e

C L= +M M M  exhibit significantly better convergence. As a result, less distortion of the 
wave shape in rough meshes can be expected.  
 

 

 
    

a       b 

    
c 

Fig.1 Natural frequencies  of hierarchical models of the rectangular acoustic region obtained by using lumped(a), consistent (b) and 
combined (c) mass matrices 
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The investigation of the space and time step size in this work has been performed by 
analysing the ultrasonic pulse propagation excited on the boundary  by the input transducer.  The 
time law of the velocity perpendicular to the boundary and its Fourier expansion components is 
shown in Fig. 2.  The width of the spectrum of the pulse in Fig.2b necessary to reproduce the 
time law in Fig.2a has to contain the harmonic components up to 2.5ω  , where  ω  - the frequency 
of the main harmonic component of the pulse. By means of numerical experiments it has been 
shown that the dimension of the element xΔ has to satisfy the condition 1.2c

x
ω
>

Δ
 that corresponds 

to about 7 elements along the wavelength of the main harmonic component. It can be shown that 
in the case of the lumped mass matrix the condition 5c

x
ω
>

Δ
has to be satisfied.  

 Fig.3 presents the shape of the wave propagating along Oy axis and time laws registered 
by input and output transducers at bottom and top edges of the region correspondingly. 
Integration time encompasses 2.5 passages of the wave along the vertical left hand side of the 
region. The wave excited by ultrasonic pulse by  the bottom transducer (input) refracts from the 
top transducer (output) and then one more time from the bottom one. The picture presents 
converged solution, the convergence being checked by comparison with the solutions in meshes 
of considerably higher refinement. Fig.4 presents the wave shapes at the moment of refraction 
from the bottom edge of the domain (time moment  t=2a/c ) obtained by using different element 
sizes.   

   a      b 
Fig.2.  Ultrasonic pulse: time law (a) and its harmonic components (b) 

  a      b   
Fig.3  Shape of the wave in terms of the velocity potential propagating in the rectangular region  meshed   by 25x25 elements (a);  

Time laws of  normal velocity values averaged on input and output  transducers (b)  
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3 Time step selection 
 
 Numerous different time integration schemes can be applied for the time integration of 
the structural wave equation. In the case of the lumped mass matrix the choice is usually 
restricted to explicit  schemes in order to avoid the algebraic matrix equation  solution at each 
time step. As explicit schemes exhibit only conditional stability, the time step size is restricted by 
the numerical stability condition of the numerical scheme. Practically  for the ultrasonic pulse 
(Fig.2) propagation analysis the time step size is restricted to 

1.5
xt
c

Δ
Δ <  . As a rule, such time step 

value is sufficient for ensuring accuracy of the explicit scheme as with 
5

cx ω
Δ =  we have about 90 

integration points per period of the main harmonic component (it is necessary to notice that the 
highest harmonic component of the pulse taken into account is about  2.5ω , see Fig.2b).   
 If combined mass matrix is used, the explicit time integration schemes have no 
computational advantage. Iteration methods for the algebraic matrix equation solution have to be 
applied in any case, so explicit , as well as, implicit  time integration  schemes can be used. With 
larger elements, the time step ensuring the numerical stability of explicit methods is larger and 
usually this value is too large to ensure accuracy.  In other words, accuracy, not the stability, 
becomes decisive for the selection of the time step. 
 Here we compare the behaviour of several time integration schemes during the analysis 
of  the ultrasonic pulse  propagation  and evaluate in each case the maximum possible time 
integration step. The following time integration schemes have been considered. 
 
 Central Difference Scheme (CDS) [10]: 

2 2 2

1 1 2 1 1[ ] [ ] { } { } [ ] [ ] { } [ ] [ ] { } ;
2 2t t t t t tt tt t t+Δ −Δ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ = − − − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟Δ ΔΔ Δ Δ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
M C U Q K M U M C U  

 
Generalized Newmark’s scheme (GNS)  [11]: 
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where parameters , 0,1, 2,...k k mβ =  are selected in order to supply the necessary algorithmic features 
to the integration scheme; 
 

 
Modified trapezoidal method (MTM) [13]: 

( )
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2
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2

t t t t t t

t t t t t t
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Harmonic acceleration method(HAM) [12]:  
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where  λ  is selected close to the frequency of expected main harmonic component of the 
response; 
  

Time-discontinuous  Galerkin finite element method(TDGFEM) [14]: 
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The algorithm enables to apply adaptive time stepping basing on the difference norms 
{ } { } , { } { }t t t t

− − − −− − /U U U U . 
 

We are eager to select the time integration step as large as possible to reduce 
computational cost and simultaneously to ensure accuracy of the numerical integration. Fig.4 
presents the wave shapes at the moment of refraction from the bottom edge of the domain (time 
moment  2at=

c
) obtained by means of the above mentioned time integration schemes and 

compared  with the solution obtained with considerably smaller time step which we regard as the 
“exact ” solution. Simple comparison indicates that the best accuracy has been obtained by using 
third accuracy order GNS  with parameters 0 1 2 3

1 1 1; ; ; 1
4 3 2

β β β β= = = =  and TDGFEM. However, 

TDGFEM requires considerably more arithmetic operations at each time step because of the 
internal iteration loop. It is to be noticed that the selection of the time step size here was 
determined by accuracy considerations, the conditional algorithmic stability limit being reached 
at larger values of the time step size. As it can be seen from the results presented in Fig.5, larger 
time steps are not reasonable to apply.  
      If  more refined mesh is being used , e.g., 

2
cx
ω

Δ = ,    the time step size is limited by 

stability considerations. We investigate the situation, when the time step size is beyond the 
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algorithmic stability limit of conditionally stable schemes. Now unconditionally stable schemes 
have to be applied,  as representatives of which we select HAM and second order nconditionally 
stable GNS with 0 1 2

1 1; ; 1
2 2

β β β= = = . Fig.6 represents the results obtained by using  the two 

schemes and conditionally stable TDGFEM the stability limit of which has not been yet reached 
by the time step size. The behaviour of the solution obtained by using  TDGFEM is obviously 
the best. 

 
 

         
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.4.  Shape of the wave along the left hand vertical edge at time moment t=2a/c 
obtained by using different time integration schemes; 

element size cx
ω

Δ = ;  time step size xt
ω
Δ

Δ =  within the limits of conditional stability 

of integration schemes;   ______   -  “exact” solution;     ___.___   -  CDM;   

  _ _ _ _  - GNS ,  0 1 2 3
1 1 1; ; ; 1
4 3 2

β β β β= = = = ; 

----*-----  -  HAM, λ ω=   ;    -----x----  - MTM ;    ----o----  - TDGFEM 
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Fig.5. Shape of the wave along the left hand vertical edge at time moment t=2a/c obtained 
by using different rectangular mesh refinement; mass matrices 
[ ] 0.75[ ] 0.25[ ]e e e

C L= +M M M ; 

______   - N=101, element size 
4.25

cx
ω

Δ = ;   ___.___   -  N=81, element size 
3.4

cx
ω

Δ = ;  

----*----  -  N=51, element size 
2.1

cx
ω

Δ = ;        _ _ _ _   - N=36, element size 

cxΔ = ;

 
Fig.6.  Shape of the wave along the left hand vertical edge at time moment t=2.11a/c 
obtained by using different time integration schemes; 

element size 
2.12

cx
ω

Δ = ;  time step size xt
ω
Δ

Δ =  requires the unconditional stability 

of integration schemes; 
______   -  “exact” solution  

 ----*----  - GNS , 0 1 2
1 1; ; 1
2 2

β β β= = = ; 

_ _ _ _ _  -  HAM, λ ω=   ; ----o----  - TDGFEM 
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4 Computer program for explicit analysis of elastic and acoustic ultrasonic 
wave propagation 

 
In order to develop a computer program able to perform explicit analysis of ultrasonic 

pulse propagation problems in real specimens an efficient computational strategy has been 
employed. 

(a) Large domains under investigation are subdivided into rectangular areas of uniform 
quadrilateral finite element meshes and small number of areas of arbitrary geometrical shape 
presented by free meshes. The product t[K]{U }  for the regular domains is being obtained on 
the element level and then assembled to nodal vector. As all the matrices of the elements in 
this domain are identical, the calculation of the product corresponding to node ij , can be 
presented by the  recursive formula as 
 
[ ]{ } ( ){ } ( ){ } ( ){ }

( ){ } ( ){ }

{ } { } { }

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡⎣ ⎦ ⎣ ⎦ ⎣ ⎦

e e e e e e e e
11 22 33 44 21 34 23 14i, j i, j i -1, j i, j+1

e e e e
12 43 41 32i+1,j i, j-1

e e e e
24 13 42 31i-1, j+1 i+1,j+1 i+1,j-1

K U = K + K + K + K U + K + K U + K + K U +

+ K + K U + K + K U +

+ K U + K U + K U + K { }⎤⎣ ⎦ i-1, j-1
U

(5) 

where [ ] , , , 1,2,3,4e
st s t =K are blocks of dimension 

2x2 of the stiffness matrix of the quadrilateral 
element the local nodal numbers of which are 
being assigned from the bottom left corner in 
counter-clockwise direction.  

Formula (5) recalls the relations of the 
finite difference method described in [2] 
invoking similar number of arithmetic 
operations to be performed during each time 
integration step. However, the finite element 
approach avoids algorithmic difficulties 
encountered when the finite difference model 
has to be connected with adjacent regions of 
arbitrary shape modelled by free finite 
element meshes. The calculation of the displacements for free-meshed domains requires 
considerably greater amounts of computational time pro node, however, usually the number 
of nodes in such domains is small in comparison with the total number of nodes of the model. 
Diagonal (lumped) mass and damping matrices are being used, therefore no matrix inverses 
are  is necessary in (2).   

(b) The domain regularly meshed by quadrilateral elements is subdivided into 
rectangular subdomains displacements of which are stored as files on hard disc. For each 
subdomain the activity index is supplied indicating if the wave has reached the subdomain. 
Inactive subdomains are excluded from computation of t[K]{U } and considerable time saving is 
achieved during first stages of the wave propagation. Similarly, the subdomains passed by the 
wave and containing only very small residual vibration are indicated as inactive and excluded 
from computation until  they are reached by  the next wavefront. The velocity of the excited 
wave propagation do not coincides with the rate at which the induced signal propagates in the 
finite element mesh. At the next time integration step non zero displacement value attains 

K K

KK
3

1 2

4

i,j

i-1,j-1 i,j-1 i+ 1,j

i-1,j i+ 1,j

i-1,j+ 1 i,j+ 1 i+ 1,j+ 1

U

V

 
 

Fig. 7 Fragment of the regular meshing zone  
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nodes which surround node had started to vibrate at previous time step, thus the signal 
propagating rate in the mesh is x

t
Δ
Δ

. It is at least 2 times greater than actual velocity of the 

longitudinal wave. It is possible to reduce excitation rate by setting bigger time step, however 
that forces to utilize an unconditionally stable time integration algorithm. The  proposed 
technique by means of filtrating allows eliminate the numerical noise which propagates with 
greater speed than the longitudinal wave. Displacements of the nodes are being set to zero 
value if they do not exceed a predefined threshold. Actually it is sufficient to nullify all the 
values below the 4

max10 u− × , where maxu  corresponds to the maximum value of the 
displacement since the start of program. Such checks of displacement values is being 
performed after every time integration step.  

(c ) Products t[K]{U } could be evaluated for every individual rectangular zone by using 
displacements of certain and adjacent zones. If mass matrices are diagonal, formula (5) can be  
used for every zone separately. That allows to store in the random access memory only 
products t[K]{U } corresponding to the nodes shared by adjacent areas while products 

t[K]{U } corresponding to the internal nodes of the area are stored on a hard disc. 
(d) Wave formations of small amplitudes the development of which is of no interest in 

the future can be eliminated by establishing the zero threshold value for displacements. The 
displacement values of the whole model  are modified at time steps t and  t-h as follows:  

Fig.8.  A fragment of  elastic domain:  the displacement contour plot of the ultrasonic pulse  refraction and 
difraction  view from the edges of an internal defect(gap). The computation performed on a PC; total number 
of elements of the model about 4,000,000.  
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( ) max

max

( ) , 0 ;

0, 0

i i crit i crit
criti

i crit

usign u u u jeigu u u
u uu

jeigu u u

⎧ × − × − >⎪ −= ⎨
⎪ − ≤⎩

 (6)

   
 

 
The  computer program has been developed in Compaq FORTRAN and run on  a 

Pentium computer. The displacement contour plot on Fig.8 presents a wave pattern obtained 
as a result of  a 3MHz ultrasonic pulse sent into 8x15cm steel plate through an oblique 
plexyglass cone.  
 
 
5 Conclusions 
 

During the finite element modelling of  the transient ultrasonic pulse propagation the 
main challenge is the computational performance of the  model expressed in terms of amount of 
memory and computation time. It is reasonable to keep the mesh and time step sizes of the model 
as large as possible ensuring simultaneously the accuracy of computation. 
• the accuracy of natural frequencies of the region that finally  determine the dispersion 

relation of the model can be significantly improved by using mass matrices in the form of 
linear combination of lumped and consistent ones. This enables to keep the element linear  
dimension up to 3 times larger compared with element sizes necessary n the case of lumped 
mass matrices and comprise about 7-8 elements per wavelength of the main harmonic 
component of the typical pulse. The highest harmonic component of the pulse has about 2.5 
times greater frequency. The price for such an improvement is a non-diagonal form of the 
mass matrix, however, employing iterative algebraic equation solvers requires only   about 7 
iterations at each time step;  

• larger elements allow to use greater time steps of time integration. In coarser meshes the 
accuracy and not the algorithmic stability requirements predetermine the time step size. 
Among five different time integration algorithms under consideration the 3rd order maximum 
accuracy generalized Newmark’s scheme gives the best results when integrating the 
ultrasonic pulse propagation equations requiring about 15 time steps per one period of the  
main harmonic component of the typical pulse. Similar accuracy has been obtained by using 
the time discontinuous Galerkin finite element method, however, the generalized Newmark’s 
scheme requires less computational time; 

• in the case of more refined meshes the 15 time steps per one period of the  main harmonic 
component of the typical pulse requires unconditional stability of the numerical integration 
scheme. The time discontinuous Galerkin finite element method gave the best results in this 
case. It is important to have efficient procedure to solve the algebraic equations and to 
perform the necessary iteration at each time step having in mind that practical problems are 
too large to perform the triangularization  of the matrix.  
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